ImageVerifierCode 换一换
格式:PPTX , 页数:21 ,大小:800.16KB ,
文档编号:5184192      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5184192.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(北邮高等数学英文版课件Lecture103.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

北邮高等数学英文版课件Lecture103.pptx

1、Section 10.312OverviewCURVExOyzr(),(),()P x ty tz tr()()i()j()ktx ty tz txyzSURFACE(,)0F x y z 1)Tangent line and normal plane2)Tangent planes and normal lines3The Parametric Equations of a Space CurveWe already know that a plane curve can be represented by a parametric0r()ra,R,tttby a parametric eq

2、uations,a line in space can be expressedequations(),(),()xx tyy ttor 000,xxltyymttzznt of the variable point P(x,y,z).r(,)x y z where is the position vectorLxyzO0rra4The Parametric Equations of a Space CurveSimilarly,a space curve may also be represented by parametricequations(),(),(),(),xx tyy tzz

3、ttr()(),(),()().tx ty tz ttor vector formxOyzris continuousr()tIf the vector valued function then is said to be a ,on the interval continuous curve;If is a continuous curve andholds for any 12r()r()tt and12,(,)t t 12,tt,then is said to be a simple curve.5The tangent line to The geometric meaning of

4、the derivative of the direction vector r(t)at t0 is that r(t0)is the direction vector of the tangent to the curve at the corresponding point P0.r(t0)is called the tangent vector to the curve at P0.:r()(),(),()tx ty tz tP0OxyzT0()r t0()r t The Vector equation of the tangent to the curve at P0 is00()(

5、)r ttr t 6The equation of the tangent line to curve 00()()r ttr t The Vector equation:The Parametric equation:000000()(),()(),()().x txtx ty tyty tz tztz t The Symmetric equation:000000()()()xxyyzzx ty tz t0()0r t 7The tangent line to A curve for which the direction of the tangent varies continuousl

6、y is called a smooth curve.0()0r t 322:r()(,)tttExample1:r()(cos,sin)tttOxy2yOx1piecewise smooth curve8The normal plane to We have seen that for a given space curve if r(t)is derivable at t0 and r(t0)0,then the tangent to at P0 exists and is unique.There is an infinite number of straight lines throu

7、gh the point P0,which are perpendicular to the tangent and lie in the same plane.The plane is called the normal plane to the curve at P0.through the point P0 perpendicular to the tangentthe equation of the normal plane9The normal plane to The equation of the normal plane to the curve at P0 is000000(

8、)()()()()()0 x txx ty tyy tz tzz t Example Find the equations of the tangent line and the normal plane to the following curve at point t=1.22:r()(,2,).tttt10Tangent line and normal plane to a space curveIf the equations of the curve is given in the general form(,)0,:(,)0,F x y zG x y z and the above

9、 equations of the curve determine two implicit functions of one variable x,y=y(x)and z=z(x)in the neighbourhood U(P0)and both y(x)and z(x)have continuous derivative.Thenthe symmetric equation of the tangent at P0(x0,y0,z0)is:000001xxxxyyzzdydzdxdx11Tangent line and normal plane to a space curveand t

10、he equation of the normal plane at P0(x0,y0,z0)is:00000()()()0 xxdydzxxyyzzdxdx Example Find the equations of the tangent line and the normal plane to the curve at point P0(-2,1,6).22222245,2xyzxyz 122.Tangent planes and normal lines of surfacesOyxz0000(,)P xy zNormal lineTangent plane13Parametrizin

11、g OyzxrAny space point can be imagined thatit lies on a sphere which is centered at(,)P x y zthe origin and the radius is 222.xyzIf the angle between the projection vector on the xOy plane and the positive OP of direction of x-axis is denoted by,and and the positive direction of z-axisOP the angle b

12、etween the vector is denoted bysincos,sinsin,cos,02,0.xryrzrthen the two coordinate system are related by,14Parametrizing Oyzxr(,)P x y zIf we denote222.xyrthe surface of the angle between the projection vector OP of on the xOy plane and the positive direction of x-axis is denoted by,and 220.rxyThen

13、 the coordinate canbe expressed by cos,sin,02.xryrzzlies onAnother way to parametrize is imagine that any point(,)P x y z(,)P x y zis also a point of a space curve or a space surface,then If we can parametrize the equation of the curve or surface.15Tangent Planes and Normal Lines to a SurfaceSuppose

14、 that the parametric equation of a surface S is 2rr(,)(,),(,),(,),(,)Ru vx u vy u v z u vu vDand the partial where r is continuous in D,the point00(,)u vD 0000r(,)r(,).uvu vu v 0000(,)r(,),vu vxyzu vvvv 0000(,)r(,),uu vxyzu vuuu exist,that is,derivatives of r at the point 00(,)u v00(,)u v,then the r

15、(,)u vwe can prove that if is differentiable at the point tangent plane of any smooth curve on the surface through the point r0,00(,)u vwith normal vector must lie in the plane which pass through is called a regular point).and (in this case,00(,)u v0000r(,)r(,)0uvu vu v16Tangent Planes and Normal Li

16、nes to a Surface 00r(,)u vrurvrruv xyOzS Therefore,the normal vector is0000r(,)r(,)uvu vu v 00(,)(,)(,)(,),(,)(,)(,)u vy zz xx yu vu vu v 00(,)ijkuuuvvvu vxyzxyz def ,.A B CThus the tangent plane is 0000.A xxB yyC zzThe normal line is000.xxyyzzABC17Tangent Planes and Normal Lines to a Surface Exampl

17、e Find the tangent plane and normal line to the right helicoid where the constant cos,sin,(0)xuvyuvazav at the point 2,.4uv 18Tangent Planes and Normal Lines to a Surface derivatives of F are all continuous and the vector ,0,xyzF F F say 0.zF which is determined by(,)zz x y Then,there exists a funct

18、ion,if all the first order partialIf the surface S is expressed by(,)0F x y z Thus,the surface(,)0F x y z and has continuous partial derivative.S can be repressed by r(,)(,(,)x yx y z x y It is easy to see that r(0,1,)(0,1,/),yyyzzFFr(1,0,)(1,0,/),xxxzzFFthen we haven(,).xyzF F F orrr(/,/,1)xyxzyzFF

19、 FF19Tangent Planes and Normal Lines to a Surface0(,)A surfaceF x y z 000int,(,),xyzPFor any poPa normal vector at P isFF F 000000000000 0 (,)(,()()()()()(),),.xyzxyzPSo the tangent plane at P to the surface isthF F Fxxyy zF PxxF PyyFatzzsziPThe normal line is000000.()()()xyzxxyyzzFPFPF P20Tangent P

20、lanes and Normal Lines to a Surface Example Given an ellipsoid2225:22Sxyzand a plane:40,xyz 1)Find the tangent plane to the ellipsoid at the point P(x0,y0,z0)parallel to the plane.2)Find the points on the ellipsoid with minimum and maximum distance to the plane.21ReviewTangent line and normal plane to a space curve ParametrizingThe tangent plane and the norm line of a surface

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|