1、第二章第二章初初 等等 模模 型型1谢谢观赏2019-8-23一、公平的席位问题一、公平的席位问题2谢谢观赏2019-8-23 问题的提出问题的提出 把定量的席位分配给不同的单位,并使得分配尽可能把定量的席位分配给不同的单位,并使得分配尽可能地地“公正公正”,这就是所谓的,这就是所谓的“席位分配席位分配”问题问题.3谢谢观赏2019-8-23 问题问题 某学校有某学校有3个系,共个系,共200名学生,其中甲系有学名学生,其中甲系有学生生100名,乙系有学生名,乙系有学生60名,丙系有学生名,丙系有学生40名。现拟成名。现拟成立有立有20人组成的学生会,问应如何分配学生会名额?人组成的学生会,问
2、应如何分配学生会名额?解解 3个系的学生数所占须生总额的比例为个系的学生数所占须生总额的比例为 ,由,由此不难得到名额分配方案为此不难得到名额分配方案为 。5:3:210,6,4 若丙系有若丙系有6名学生转到他系,其中甲系名学生转到他系,其中甲系3人,乙系人,乙系3人,人,此时应如何分配名额呢?此时应如何分配名额呢?一般原则是先取整数分配,小数部分按取大原则。一般原则是先取整数分配,小数部分按取大原则。4谢谢观赏2019-8-23 甲系:甲系:;1032010.3200 乙系:乙系:;63206.3200 丙系:丙系:。34203.4200即:甲系即:甲系10人,乙系人,乙系6人,丙系人,丙系
3、4人。人。这样的分配方案是否公平呢?这样的分配方案是否公平呢?5谢谢观赏2019-8-23 假设学生会成员数上升到假设学生会成员数上升到21人,问应该如何分配?人,问应该如何分配?甲系:甲系:;1032110.815200 乙系:乙系:;63216.615200 丙系:丙系:.34213.57200即:甲系即:甲系11人,乙系人,乙系7人,丙系人,丙系3人人.6谢谢观赏2019-8-23 从中可以看出这样的分配方案并不合理从中可以看出这样的分配方案并不合理.作为丙系的作为丙系的代表是不会接受这样的分配方案的代表是不会接受这样的分配方案的.7谢谢观赏2019-8-23 模型的建立模型的建立 假设
4、假设 1.席位是以整数计量的,并且为有限个,设为席位是以整数计量的,并且为有限个,设为 个个;n 2.参加分配的单位为有限个,并且不超过席位数参加分配的单位为有限个,并且不超过席位数.设设单位数为单位数为 ,即,即 ;mmn 3.每个单位有有限个人,席位是按各集体的人员多少每个单位有有限个人,席位是按各集体的人员多少来分配的来分配的.8谢谢观赏2019-8-23 所谓公平原则指的是所谓公平原则指的是:每个席位在各自的集体中所代每个席位在各自的集体中所代表的人员数希望是相等的表的人员数希望是相等的.9谢谢观赏2019-8-23 建模建模 为体现公平性,引入指标为体现公平性,引入指标:设设 有有
5、两个集体,人员数分别是两个集体,人员数分别是 ,分配,分配到的席位数为到的席位数为 ,故每个席位所代表的人员数分别,故每个席位所代表的人员数分别为为,A B,ABpp,ABnn显然,若显然,若 ,则对,则对 两个集体而言,分配是绝两个集体而言,分配是绝ABkk,A B,.ABABABppkknn10谢谢观赏2019-8-23对公平的对公平的:若不相等,则若不相等,则“绝对不公平度绝对不公平度”为为 但下面的例子说明这样的刻画还是有缺陷的但下面的例子说明这样的刻画还是有缺陷的.ABABABppkknn11谢谢观赏2019-8-23集体名集体名人员数人员数席位数席位数代表数代表数绝对不公平度绝对不
6、公平度A12010122B10010102C1020101022D100010100212谢谢观赏2019-8-23 在上面的例子中,绝对不公平度都相等在上面的例子中,绝对不公平度都相等:2,ABCDkkkk但实际问题是但实际问题是:间存在的不公平显然要比间存在的不公平显然要比 间间存在的不公平要大存在的不公平要大.为此我们引入为此我们引入:,A B,C D 当当 时,时,吃亏,称吃亏,称ABABABppkknnA为为 的相对不公平度;的相对不公平度;A,1ABABAABBBAkkpnrnnkpn13谢谢观赏2019-8-23 当当 时,时,吃亏,称吃亏,称ABABABppkknnB,1BAB
7、ABABAABkkpnrnnkpn为为 的相对不公平度。的相对不公平度。B 在前例中,在前例中,,0.2,0.02.AABCCDrnnrnn 我们的目标是:在每一次分配时都使得相对不公平度我们的目标是:在每一次分配时都使得相对不公平度都达到最小都达到最小.14谢谢观赏2019-8-23 解模解模 设设 单位已有席位单位已有席位 ,单位有席位单位有席位 ,并假定,并假定 吃吃亏,即亏,即 ,因而,因而 有意义有意义.AAnBBnAABkk,AABrnn 现考虑下一个席位的分配现考虑下一个席位的分配:席位分配给席位分配给 仍然是仍然是 吃亏,即吃亏,即AA,1ABABppnn毫无疑问,该席位应该分
8、配给毫无疑问,该席位应该分配给 .A15谢谢观赏2019-8-23 把下一个席位分配给把下一个席位分配给 使使 吃亏,即吃亏,即AB,1ABABppnn此时可算出此时可算出 的相对不公平度的相对不公平度B11,1,BABABABpnrnnpn 把下一个席位分配给把下一个席位分配给 一定是一定是 吃亏,此时相对不吃亏,此时相对不公平度为公平度为 BA1,11,ABAABBApnrnnpn16谢谢观赏2019-8-23 把下一个席位给把下一个席位给 使使 吃亏,这是不可能的。吃亏,这是不可能的。BB 问题的关键就是在问题的关键就是在情况下,通过比较相对不公平情况下,通过比较相对不公平度的大小,确定
9、下一个席位的分配方案,原则是把下一度的大小,确定下一个席位的分配方案,原则是把下一席位分配给相对不公平度大的一方。由此得到以下结论席位分配给相对不公平度大的一方。由此得到以下结论:当当 时,这一席位分配时,这一席位分配给给 ;,11,AABBABrnnrnnA 当当 时,这一席位分配时,这一席位分配给给 .,11,AABBABrnnrnnB17谢谢观赏2019-8-23 若若 ,即,即,11,AABBABrnnrnn1111,ABBABAABpnpnpnpn 上式等价于上式等价于22.11ABAABBppnnnn引入引入2,1iiiipQiA Bn n18谢谢观赏2019-8-23则在则在的情
10、况下,席位应分配给的情况下,席位应分配给 值大的那一方。值大的那一方。iQ 在情况在情况,由于,由于,1ABABppnn所以,所以,222211 ,1AABAAAABBBBBpppQnnnnpQnn19谢谢观赏2019-8-23因而把席位分配给因而把席位分配给 符合上面的原则符合上面的原则.A 把上面讨论的情况一般化就得到把上面讨论的情况一般化就得到 个单位个单位 个席位的个席位的分配方法:分配方法:mn 当分配一个新的席位时,首先按当分配一个新的席位时,首先按计算各单位的计算各单位的 ,iQ2,1,2,1iiiipQimn n再根据再根据 值最大的一方进行分配。值最大的一方进行分配。iQ20
11、谢谢观赏2019-8-23 再回到本节一开始的问题,此时再回到本节一开始的问题,此时 3.m 首先先给各系一个席位,因而首先先给各系一个席位,因而 再计算再计算 1231.nnn123103,63,34,21.pppn2212103635304.5,1984.5,22QQ2334578,2Q 由此,第由此,第4个席位应该给甲系,此时个席位应该给甲系,此时 再计算再计算值值:12,n 1Q21谢谢观赏2019-8-23211031768.17,2 3Q 而而 值没有变化,因此得到第值没有变化,因此得到第5个席位给乙系个席位给乙系.由由此得到余下的席位的分配情况(具体分配见下表)此得到余下的席位的
12、分配情况(具体分配见下表).23,Q Q22谢谢观赏2019-8-23序号序号15304.5(4)1984.5(5)578.0(9)21768.17(6)661.5(8)192.67(15)3884.08(7)330.75(12)96.33(21)4530.45(10)198.45(14)5353.63(11)132.3(18)6252.6(13)7198.45(16)1Q2Q3Q23谢谢观赏2019-8-23序号序号8147.35(17)9117.88(19)1096.45(20)席位个数席位个数1164 上面的计算结果表明上面的计算结果表明:丙系最终保住了一个席位丙系最终保住了一个席位.2
13、4谢谢观赏2019-8-2325谢谢观赏2019-8-23二、双层玻璃窗的功效二、双层玻璃窗的功效26谢谢观赏2019-8-23 问题的提出问题的提出 在北方城市的某些建筑中,玻璃窗是用在北方城市的某些建筑中,玻璃窗是用双层玻璃构成的,并且两层玻璃之间还留有一定的空双层玻璃构成的,并且两层玻璃之间还留有一定的空隙。其作用是减少热量的流失。假定玻璃窗的厚度为隙。其作用是减少热量的流失。假定玻璃窗的厚度为 ,今建立一个相应的数学模型来讨论这个问题,并与一个今建立一个相应的数学模型来讨论这个问题,并与一个厚度为厚度为 的玻璃窗进行热量流失的比较。的玻璃窗进行热量流失的比较。d2d墙墙墙墙1T2T2d
14、热传导方向热传导方向墙墙墙墙1T2TaTbTld27谢谢观赏2019-8-23 模型假设模型假设 1.热量的传播过程中只有传导,没有对流,即假设窗热量的传播过程中只有传导,没有对流,即假设窗户的密封性能很好,双层玻璃之间的空气是不流通的;户的密封性能很好,双层玻璃之间的空气是不流通的;2.室内温度室内温度 和室外温度和室外温度 保持不变,热传导过程处保持不变,热传导过程处于稳定状态,即沿热传导方向,单位时间通过单位面积于稳定状态,即沿热传导方向,单位时间通过单位面积的热量是常数;的热量是常数;1T2T 3.玻璃材料均匀,热传导系数是常数。玻璃材料均匀,热传导系数是常数。28谢谢观赏2019-8
15、-23 建模建模 由假设,热传导过程遵从下面的物理定律由假设,热传导过程遵从下面的物理定律:厚度为厚度为 的均匀介质,两侧温度差为的均匀介质,两侧温度差为 ,则单位时间,则单位时间由温度高的一侧流过单位面积的热量由温度高的一侧流过单位面积的热量 与与 成正比,与成正比,与 成反比,即成反比,即dTQTd.TQkd其中其中 为热传导系数。为热传导系数。k29谢谢观赏2019-8-23 记双层窗内层玻璃的外侧温度是记双层窗内层玻璃的外侧温度是 ,外层玻璃的内侧,外层玻璃的内侧温度是温度是 ,玻璃的热传导系数为,玻璃的热传导系数为 ,空气的热传导系数,空气的热传导系数为为 ,则由,则由式,单位时间单
16、位面积的热量传导(热式,单位时间单位面积的热量传导(热量流失)为量流失)为aTbT1k2k121121.aabbTTTTTTQkkkdld由此得到:由此得到:12112,abTTTTQkd30谢谢观赏2019-8-23即:即:再由再由12,abl QTTk111212,abdQk TTk TT代入代入式得:式得:11112122,kdQk TTl Qk移项整理后得:移项整理后得:31谢谢观赏2019-8-231111222,kQdlk TTk所以:所以:112112112,22k TTk TTQdsk ldk d其中其中12.klsdk32谢谢观赏2019-8-23再注意到,厚度为再注意到,厚
17、度为 的单层玻璃窗的热传导过程为的单层玻璃窗的热传导过程为2d1221,2TTQkd两者之比为两者之比为1221.2QQs 为了得到更进一步的结果,需要传导系数为了得到更进一步的结果,需要传导系数 的值。的值。实验数据表明,常用玻璃的热传导系数为实验数据表明,常用玻璃的热传导系数为12,k k3314 108 10 J/cmskwh,k 33谢谢观赏2019-8-23不流动、干燥空气的热传导系数为不流动、干燥空气的热传导系数为422.5 10 J/cmskwh,k 所以所以121632.kk取最保守的估计,即取取最保守的估计,即取 由由,得得12/16,kk 121,81QlhQhd34谢谢观
18、赏2019-8-23 比值比值 反映了双层玻璃窗在减少热量流失上的功反映了双层玻璃窗在减少热量流失上的功效。它只与效。它只与 有关。下图给出了有关。下图给出了 曲线,曲线,当当 上升时,上升时,迅速下降;而当迅速下降;而当 到达一定值后,到达一定值后,下降趣缓。由此可见,下降趣缓。由此可见,不必过大。不必过大。12/QQ/hl d12/QQhh12/QQh12/QQh12/QQh2460.020.030.0635谢谢观赏2019-8-23 模型应用模型应用 该模型具有一定的应用价值。尽管双层玻璃窗会增加该模型具有一定的应用价值。尽管双层玻璃窗会增加制作工艺上的成本,但它在降低热量流失上的功效是
19、相制作工艺上的成本,但它在降低热量流失上的功效是相当可观的。通常,建筑规范要求当可观的。通常,建筑规范要求 ,按照该,按照该模型,模型,即双层玻璃窗比同样多的玻璃材,即双层玻璃窗比同样多的玻璃材料制成的单层玻璃窗节约热量约料制成的单层玻璃窗节约热量约 左右。左右。/4hl d12/3%QQ 97%36谢谢观赏2019-8-2337谢谢观赏2019-8-23三、四足动物的身材三、四足动物的身材38谢谢观赏2019-8-23 问题的提出问题的提出 如何根据四足动物的外部尺寸来估计它的重量?如何根据四足动物的外部尺寸来估计它的重量?要点:本模型是希望建立四足动物的躯干特征来估计要点:本模型是希望建立
20、四足动物的躯干特征来估计其重量,而并不是研究其生理结构的特征。其重量,而并不是研究其生理结构的特征。39谢谢观赏2019-8-23 模型假设模型假设 1.四足动物的躯干的外形为圆柱体;四足动物的躯干的外形为圆柱体;2.躯干被架在四条腿上,把躯干看作简支弹性梁。躯干被架在四条腿上,把躯干看作简支弹性梁。dlbf40谢谢观赏2019-8-23 建模建模 设躯干的长度为设躯干的长度为 ,躯干截面(圆)的面积为,躯干截面(圆)的面积为 ,直径,直径为为 ,四足动物的质量为,四足动物的质量为 ,体重为,体重为 ,由于体重的作,由于体重的作用,躯干(弹性)的垂度(梁的最大挠度)为用,躯干(弹性)的垂度(梁
21、的最大挠度)为 。lSdmfb 由弹性力学知道:由弹性力学知道:又:又:,所以,所以fS l32,f lbSd41谢谢观赏2019-8-2343,blld 比值比值 是动物的相对下垂度。是动物的相对下垂度。太大,四肢将无法支太大,四肢将无法支blbl撑;撑;太小,无疑是一种浪费。因此,从生物学的角度太小,无疑是一种浪费。因此,从生物学的角度bl来说,因此对每一种动物而言,来说,因此对每一种动物而言,已经达到最佳状态,已经达到最佳状态,bl故可假设:相对下垂度故可假设:相对下垂度 为常数。在该假设下有:为常数。在该假设下有:bl32.ld42谢谢观赏2019-8-23在该假定之下,有在该假定之下
22、,有32,ld所以:所以:24,fmS ldll 即:体重与躯干长度的即:体重与躯干长度的4次方成正比。次方成正比。43谢谢观赏2019-8-23四、汽车的刹车距离四、汽车的刹车距离44谢谢观赏2019-8-23 问题的提出问题的提出 美国的某些司机培训课程中有这样的规则美国的某些司机培训课程中有这样的规则:正常驾驶条正常驾驶条件下件下,车速每增加车速每增加10英里英里/小时小时,后面与前面一辆车的距后面与前面一辆车的距离应增加一个车身的距离离应增加一个车身的距离.又云又云:实现这个规则的一种简实现这个规则的一种简便方法是所谓便方法是所谓“两秒准则两秒准则”:即后车司机从前车经过某即后车司机从
23、前车经过某一一标志开始默数标志开始默数2秒后到达同一标志,而不管车速如何秒后到达同一标志,而不管车速如何.45谢谢观赏2019-8-23 问题分析问题分析 制定这样的规则是为了在后车急刹车情况下不致撞上制定这样的规则是为了在后车急刹车情况下不致撞上前车,即要保持汽车的刹车距离前车,即要保持汽车的刹车距离.显然刹车距离与车速显然刹车距离与车速有关有关.先看汽车在先看汽车在10英里英里/小时(约小时(约16km/h)的车速下两)的车速下两秒钟内汽车能行驶的距离秒钟内汽车能行驶的距离:10 5280 2 12/3600352 inch,所以,行驶距离用公制来表示为:所以,行驶距离用公制来表示为:35
24、2 2.54894 cm.46谢谢观赏2019-8-23而这个距离远大于一个车身平均长度(而这个距离远大于一个车身平均长度(15英寸英寸=4.6m).所以所以“两秒准则两秒准则”与上述规则并不一致与上述规则并不一致.为此,我们需为此,我们需要要对刹车距离作仔细的分析对刹车距离作仔细的分析.注意到刹车距离是由反映距离和制动距离两部分构成注意到刹车距离是由反映距离和制动距离两部分构成的的.反映距离由反映时间和车速决定的,反映时间取决于反映距离由反映时间和车速决定的,反映时间取决于司机个人的状态和制动系统的灵敏性,一般情况下,把司机个人的状态和制动系统的灵敏性,一般情况下,把它视为常数,且在这段时间
25、内车速为常数它视为常数,且在这段时间内车速为常数.47谢谢观赏2019-8-23 制动距离与制动器作用力、车速、车重及道路、气候制动距离与制动器作用力、车速、车重及道路、气候等因素有关等因素有关.设计制动器的一个合理原则是设计制动器的一个合理原则是:最大制动最大制动力与车的质量成正比,使汽车的减速度基本上是常数力与车的质量成正比,使汽车的减速度基本上是常数.基于以上分析,我们可以做这样的一些假设基于以上分析,我们可以做这样的一些假设:48谢谢观赏2019-8-23 模型假设模型假设1.刹车距离刹车距离 等于反应距离等于反应距离 与制动距离与制动距离 之和;之和;d1d2d2.反应距离反应距离
26、与车速与车速 成正比,比例系数为反应时间成正比,比例系数为反应时间 ;1dv1t3.刹车时使用最大制动力刹车时使用最大制动力 ,所做的功等于汽车动能所做的功等于汽车动能的改变,且的改变,且 与车的质量与车的质量 成正比成正比.F FFm49谢谢观赏2019-8-23 建模建模 由假设由假设2,11.dtv 再由假设再由假设3,在力,在力 作用下行驶距离作用下行驶距离 作的功作的功 使使车速从车速从 变成变成 ,动能的变化为,动能的变化为 ,即,即F2d2Fdv02/2mv221.2Fdmv又又 由牛顿第二定律由牛顿第二定律 再由上式得再由上式得,Fm,Fma22dkv50谢谢观赏2019-8-
27、23其中其中 由假设由假设1刹车距离为刹车距离为/2,ka21.dt vkv 为了将模型应用于实际,需要知道参数为了将模型应用于实际,需要知道参数 的值的值.取取 的经验估计值的经验估计值 而而 用曲线拟合来得到用曲线拟合来得到:1,k t1t0.75,k车速车速实际刹车距离实际刹车距离计算刹车距离计算刹车距离刹车时间刹车时间2042391.53073.576.61.840116126.22.151谢谢观赏2019-8-23车速车速实际刹车距离实际刹车距离计算刹车距离计算刹车距离刹车时间刹车时间50173187.82.560248261.43.070343347.13.680464444.84
28、.3 利用表中的数据及利用表中的数据及 得得 ,于是,于是10.75t 0.06k 上表中的第三列的数据是由上表中的第三列的数据是由式计算得到的,下图给式计算得到的,下图给20.750.06.dvv52谢谢观赏2019-8-23出了实际刹车距离与计算刹车距离的比较。出了实际刹车距离与计算刹车距离的比较。304050607080v100200300400500d计算刹车距离计算刹车距离实际刹车距离实际刹车距离53谢谢观赏2019-8-23 模型的应用模型的应用 按照上述模型可以将所谓按照上述模型可以将所谓“2秒准则秒准则”修正为修正为“秒准秒准则则”,即后车司机可以从前车经过某一标志开始默数即后
29、车司机可以从前车经过某一标志开始默数 后到达后到达同一标志,同一标志,由下表给出由下表给出:(单位:英里)(单位:英里)ttt车速车速0-1010-4040-6060-80 t秒秒123454谢谢观赏2019-8-23五、扬帆远航五、扬帆远航55谢谢观赏2019-8-23 问题的提出问题的提出AB北北风向风向帆船帆船帆帆 海面上东风劲吹,帆船从海面上东风劲吹,帆船从 点驶向正东方的点驶向正东方的 点,为点,为了借助风力,船应该先朝东北方向前进,然后再转向东了借助风力,船应该先朝东北方向前进,然后再转向东南方,问题是如何选择起航时的航向南方,问题是如何选择起航时的航向 和帆的朝向和帆的朝向 .A
30、B 模型分析模型分析 帆船在航行过程中既受到风通帆船在航行过程中既受到风通过帆对船的推力,又受到风对船过帆对船的推力,又受到风对船的阻力的阻力.56谢谢观赏2019-8-23 风的推力分解成风的推力分解成 其中其中 与帆垂直,与帆垂直,与帆平行与帆平行.又分解成又分解成 为风在航向上的推为风在航向上的推力力,风的阻力风的阻力 分解成分解成 其中其中 为风在航向上为风在航向上的阻力,因为的阻力,因为 与与 的方向正好相反,所以船受到的的方向正好相反,所以船受到的净推力为净推力为12,www1w2w1w112,wff1fp12,ppp1p1p1f11.fp 由流体力学知道:在船速不大的由流体力学知
31、道:在船速不大的情况下航速与净推力成正比情况下航速与净推力成正比.于是于是当船的航向当船的航向 与帆的朝向与帆的朝向 确定之确定之后,应该使船在正东方的速度,即后,应该使船在正东方的速度,即ABw2w1w1f2f1pp2p图图257谢谢观赏2019-8-23净推力在正东方向的分力达到最大净推力在正东方向的分力达到最大.ABw2w1w1f2f1pp2p图图258谢谢观赏2019-8-23 模型假设模型假设 记帆的迎风面积为记帆的迎风面积为 ,船的迎风面积为,船的迎风面积为 ,1s2s 1.风通过对帆的推力风通过对帆的推力 与与 成正比,风对船体的阻力成正比,风对船体的阻力 与与 成正比,比例系数
32、相同;成正比,比例系数相同;w1sp2sw2w 2.的分力的分力 与帆面平行,可以忽略;与帆面平行,可以忽略;3.分力分力 和和 垂直于船身,可以被船舵抵消,不予考垂直于船身,可以被船舵抵消,不予考虑;虑;2f2p59谢谢观赏2019-8-23 4.航速航速 与净推力与净推力 成正比,比例系数为成正比,比例系数为11ffpv1.k 建模建模 根据模型假设和图根据模型假设和图2中各个力之间的几何关系,得到中各个力之间的几何关系,得到112,wks pks1sinsinsin,fww1sin,ww1cos,pp60谢谢观赏2019-8-23111.vkfp 记船在正东方的速度分量为记船在正东方的速
33、度分量为 则则1,v1111coscos,vvkfp则问题是确定则问题是确定 和和 ,使,使 最大最大.1v61谢谢观赏2019-8-23 解模解模 该问题是一个二元函数的极值问题。由该问题是一个二元函数的极值问题。由,与与 无无关,故首先在关,故首先在 固定时,使固定时,使 最大,解出最大,解出 ,然后再求,然后再求 使使 最大最大.1p1f1v 由由式式1sinsinfw1cos2cos,2w62谢谢观赏2019-8-23在在式对式对 求导求导,并令其为令并令其为令,则有则有1sin20,fw 得得 此时此时.2最大最大.将上述结果代入到将上述结果代入到式,得式,得111cos/2cosc
34、osvkwp11cos/2fw1/2112/coscos,k wp w63谢谢观赏2019-8-23由由式,记式,记2121/2,12/12/,kk wtp wss 则则式为式为121coscosvkt22211cos,42k ttt由上式由上式,知当知当 时时,达到最大达到最大,又又 1cos2t1v12,ss64谢谢观赏2019-8-2311cos,42即即6075.oo因而有因而有 从而有从而有12,t 65谢谢观赏2019-8-23 结果分析结果分析 航向航向 角应在角应在 和和 之间(具体数值取决于之间(具体数值取决于 和和 之比),帆的朝向之比),帆的朝向 角为角为 的一半。这是的
35、一半。这是 点出发时点出发时船的航向及帆的朝向船的航向及帆的朝向.行驶时点行驶时点 将不在船的正东方,将不在船的正东方,上述结论不再成立,此时,应不断调整上述结论不再成立,此时,应不断调整 和和 ,才能尽,才能尽快达到快达到 点点.60 75oo1s2sABB66谢谢观赏2019-8-2367谢谢观赏2019-8-23六、量纲分析法六、量纲分析法68谢谢观赏2019-8-23 量纲分析法是量纲分析法是20世纪初提出的在物理领域中建立数学世纪初提出的在物理领域中建立数学模型的一种方法。它通过物理定律中的量纲齐次原则,模型的一种方法。它通过物理定律中的量纲齐次原则,确定各物理量之间的关系,最终建立
36、相应的数学关系,确定各物理量之间的关系,最终建立相应的数学关系,从而得到对应问题的数学模型从而得到对应问题的数学模型.69谢谢观赏2019-8-23 许多物理量是有量纲的。有些物理量的量纲是基本的,许多物理量是有量纲的。有些物理量的量纲是基本的,我们把它们称为我们把它们称为“基本量纲基本量纲”;而某些量纲是由这些量纲;而某些量纲是由这些量纲组成的,因而把它们称为组成的,因而把它们称为“复合量纲复合量纲”.基本量纲基本量纲 时间量纲时间量纲 ;tT 长度量纲长度量纲 ;lL 质量量纲质量量纲 .mM70谢谢观赏2019-8-23 复合量纲复合量纲 速度量纲速度量纲dsvdt 1;vLT 加速度量
37、纲加速度量纲dvadt 2;aLT 力的量纲力的量纲fma 2;fMLT 万有引力系数万有引力系数212f rkmm 132.kMLT 上式说明:万有引力系数是一个有量纲的量。上式说明:万有引力系数是一个有量纲的量。71谢谢观赏2019-8-23 无量纲的量记作无量纲的量记作.定理定理1 设设 个物理量个物理量 间有关系式间有关系式n12,nx xx12,0,nx xx其中其中 有基本量纲,而有基本量纲,而各量的量纲为由上述量纲表示的复合量纲,则关系式各量的量纲为由上述量纲表示的复合量纲,则关系式可表示为可表示为 个无量纲个无量纲 间的关系式间的关系式12,mx xxmn1,mnxxnm12,
38、n m 12,0.n m 72谢谢观赏2019-8-23 定理定理2 设设 个物理量个物理量 间有关系式间有关系式n12,nx xx又设有又设有 个基本量纲个基本量纲 ,且所有的物理,且所有的物理量量 的量纲可表示为的量纲可表示为m 12,mXXX1,2,ix in12,0,nx xx 1,1,2,.ijmijjxXin 若矩阵若矩阵 的秩为的秩为 ,则关系式,则关系式可表示为可表示为ijn mBr12,0,n r 73谢谢观赏2019-8-23其中其中 为无量纲的量,它们可表示为为无量纲的量,它们可表示为12,n r 1,1,2,.sijnsiixsnr 而而 是线性方程组是线性方程组 s0
39、TB X 的基本解,其中的基本解,其中 12,1,2,.Tssssna aasnr74谢谢观赏2019-8-23 由以上两个定理可以看到:若假定各物理量间的关系由以上两个定理可以看到:若假定各物理量间的关系式式的形式为的形式为1,inaiix 则量纲分析法所用的数学方法就是求解线性方程组。则量纲分析法所用的数学方法就是求解线性方程组。由于式由于式两端的量纲必须相同,则有两端的量纲必须相同,则有 11,iijnmjijX 75谢谢观赏2019-8-2376谢谢观赏2019-8-23 例例1 设质量为设质量为 的小球系在长度为的小球系在长度为 绳的一端,稍偏绳的一端,稍偏离平衡位置后,小球在重力的
40、作用下做往复运动,求摆离平衡位置后,小球在重力的作用下做往复运动,求摆动周期动周期 的表达式。的表达式。mlT解解 设在这个周期运动中各个量之间有下列关系:设在这个周期运动中各个量之间有下列关系:,Tl m g其中其中 是个无量纲的比例系数,是个无量纲的比例系数,是是重力加速度,重力加速度,为待定常数。为待定常数。g,由于关系由于关系两边的两量纲应该相等两边的两量纲应该相等77谢谢观赏2019-8-23故得故得 ,Tlmg由基本量纲得由基本量纲得 22,TLMLTLMT 由此得关系式由此得关系式0,0,21,78谢谢观赏2019-8-23该方程组的唯一解是该方程组的唯一解是11,0,.22 代
41、入到代入到得得.lTg而我们知道正确的公式是而我们知道正确的公式是2.lTg79谢谢观赏2019-8-23 注意得是,上面两个公式仅有常数的差别。此说明在注意得是,上面两个公式仅有常数的差别。此说明在利用量纲分析法得到了所需要的关系之后,还要用实验利用量纲分析法得到了所需要的关系之后,还要用实验数据来确定未知常数。数据来确定未知常数。另外在例中的关系式中,小球的质量另外在例中的关系式中,小球的质量 没有出现,此没有出现,此说明周期与小球质量无关。说明周期与小球质量无关。m80谢谢观赏2019-8-23 例例2 速度为速度为 的风吹在迎风面积为的风吹在迎风面积为 的风车上,空气的风车上,空气密度
42、为密度为 试用量纲分析法建立风车功率与试用量纲分析法建立风车功率与 之间之间的关系。的关系。vS,v S 解解 设功率为设功率为 且且,P.PV S由功率的定义:由功率的定义:所以所以,dAPAF ldt 1!1232,PA TFL TMLTTLMLT81谢谢观赏2019-8-23又由假设:又由假设:,PV S从而得到:从而得到:12323 ,PLTLMLLMT 比较上两式即得:比较上两式即得:82谢谢观赏2019-8-232321,3 即有:即有:所以关系式为所以关系式为3,1,1,3.PV S83谢谢观赏2019-8-23 例例3 不可压缩粘滞流体在管道内的稳定流动问题。不可压缩粘滞流体在
43、管道内的稳定流动问题。解解 在该问题中牵涉到的物理量有:管长在该问题中牵涉到的物理量有:管长 流速流速 流流体密度体密度 管道两端的压强差管道两端的压强差 和重力加速度和重力加速度 基本量基本量纲是纲是 其它的物理量纲有:其它的物理量纲有:,l,v,p.g ,.LMT 13,lLvLTML 12,fpML TS设粘滞系数为设粘滞系数为 则由定义则由定义 得得,vpx84谢谢观赏2019-8-23 112,.ML TgLT 再假设这些物理量之间有关系再假设这些物理量之间有关系356124,l vpg上式两边的量纲必须相同,即有:上式两边的量纲必须相同,即有:2345611312112,LLTML
44、ML TML TLT由此得到方程组:由此得到方程组:85谢谢观赏2019-8-231234563452456300.220方程组的系数矩阵为方程组的系数矩阵为113111001110,010212A86谢谢观赏2019-8-23 注意到三阶行列式注意到三阶行列式11300110,010D 从而系数矩阵的秩为从而系数矩阵的秩为3,方程组有,方程组有3个基本解:个基本解:123021 100,111010,120001.TTT 87谢谢观赏2019-8-23由此获得三个关系式:由此获得三个关系式:211112123,.vpl vlv g 由定理由定理2得得21232,0.plvvvgl 其中其中
45、在理论力学中分别被称为在理论力学中分别被称为Reynold数和数和Froude常数。常数。23,88谢谢观赏2019-8-23七、练习七、练习1.某学校有某学校有1000名学生名学生,其中其中255人住在人住在 楼楼,333住在住在楼楼,432住在住在 楼楼,学生们要成立一个学生们要成立一个10人的委员会人的委员会,试试用两中方法确定各宿舍的委员个数用两中方法确定各宿舍的委员个数.并当委员数上升并当委员数上升15人时人时,确定分配方案确定分配方案.ABC2.在商品社会里在商品社会里,有些大包装商品的单位重量价格比小有些大包装商品的单位重量价格比小包装商品的单位重量价格要低一些包装商品的单位重量
46、价格要低一些,试用比例法来构造试用比例法来构造产生这种现象的数学模型产生这种现象的数学模型.89谢谢观赏2019-8-23 提示提示:可以按下面的思路来构造模型可以按下面的思路来构造模型:商品价格与商品生产成本商品价格与商品生产成本,运输成本运输成本,包装成本等包装成本等因素有关因素有关,先确定哪些量与商品重量成正比先确定哪些量与商品重量成正比,哪些量与哪些量与商品包装的表面积成正比商品包装的表面积成正比.当商品的外形不变时来确当商品的外形不变时来确定商品重量和商品包装的表面积的关系定商品重量和商品包装的表面积的关系,在此基础上在此基础上,建立起保装商品的单位重量的价格建立起保装商品的单位重量
47、的价格 与商品重量与商品重量 的的关系关系.cw根据在根据在中所建立的关系式中所建立的关系式,计算出单位的变化率计算出单位的变化率.90谢谢观赏2019-8-23如此如此,就能根据这个模型来解释本题所提出的商品现象就能根据这个模型来解释本题所提出的商品现象.设某商品有三种不同的包装设某商品有三种不同的包装,它们的重量分别为它们的重量分别为 并且并且 相应的单价为相应的单价为和和 试证明试证明1,w23,w w123:1:2:4,www 12,c c3.c23122132.ccccwwww并说明上式的实际意义并说明上式的实际意义.91谢谢观赏2019-8-233.用量纲分析法研究人体浸在均匀流动的水中时损失的用量纲分析法研究人体浸在均匀流动的水中时损失的热量热量.记水的流速记水的流速 密度密度 粘性系数粘性系数 热传导系数热传导系数 人体尺寸人体尺寸 证明人体与水的热交换系数证明人体与水的热交换系数 与上述各物理与上述各物理量的关系可表为量的关系可表为,v,k,dh,kv dchdk其中其中 是未定函数是未定函数,定义为单位时间内人体的单位面积定义为单位时间内人体的单位面积在人体与水的温差为在人体与水的温差为 时的热量交换时的热量交换.h1oC92谢谢观赏2019-8-2393谢谢观赏2019-8-23
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。