ImageVerifierCode 换一换
格式:PPT , 页数:78 ,大小:681KB ,
文档编号:5195449      下载积分:28 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5195449.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(Ch05-《中级微观经济学》范里安-英文版课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

Ch05-《中级微观经济学》范里安-英文版课件.ppt

1、Chapter FiveChoiceEconomic RationalityuThe principal behavioral postulate is that a decisionmaker chooses its most preferred alternative from those available to it.uThe available choices constitute the choice set.uHow is the most preferred bundle in the choice set located?Rational Constrained Choice

2、x1x2Rational Constrained Choicex1x2UtilityRational Constrained ChoiceUtilityx2x1Rational Constrained Choicex1x2UtilityRational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained ChoiceUti

3、lityx1x2Affordable,but not the most preferred affordable bundle.Rational Constrained Choicex1x2UtilityAffordable,but not the most preferred affordable bundle.The most preferredof the affordablebundles.Rational Constrained Choicex1x2UtilityRational Constrained ChoiceUtilityx1x2Rational Constrained Ch

4、oiceUtilityx1x2Rational Constrained ChoiceUtilityx1x2Rational Constrained Choicex1x2Rational Constrained Choicex1x2AffordablebundlesRational Constrained Choicex1x2AffordablebundlesRational Constrained Choicex1x2AffordablebundlesMore preferredbundlesRational Constrained ChoiceAffordablebundlesx1x2Mor

5、e preferredbundlesRational Constrained Choicex1x2x1*x2*Rational Constrained Choicex1x2x1*x2*(x1*,x2*)is the mostpreferred affordablebundle.Rational Constrained ChoiceuThe most preferred affordable bundle is called the consumers ORDINARY DEMAND at the given prices and budget.uOrdinary demands will be

6、 denoted byx1*(p1,p2,m)and x2*(p1,p2,m).Rational Constrained ChoiceuWhen x1*0 and x2*0 the demanded bundle is INTERIOR.uIf buying(x1*,x2*)costs$m then the budget is exhausted.Rational Constrained Choicex1x2x1*x2*(x1*,x2*)is interior.(x1*,x2*)exhausts thebudget.Rational Constrained Choicex1x2x1*x2*(x

7、1*,x2*)is interior.(a)(x1*,x2*)exhausts thebudget;p1x1*+p2x2*=m.Rational Constrained Choicex1x2x1*x2*(x1*,x2*)is interior.(b)The slope of the indiff.curve at(x1*,x2*)equals the slope of the budget constraint.Rational Constrained Choiceu(x1*,x2*)satisfies two conditions:u(a)the budget is exhausted;p1

8、x1*+p2x2*=mu(b)the slope of the budget constraint,-p1/p2,and the slope of the indifference curve containing(x1*,x2*)are equal at(x1*,x2*).Computing Ordinary DemandsuHow can this information be used to locate(x1*,x2*)for given p1,p2 and m?Computing Ordinary Demands-a Cobb-Douglas Example.uSuppose tha

9、t the consumer has Cobb-Douglas preferences.U xxx xa b(,)1212 Computing Ordinary Demands-a Cobb-Douglas Example.uSuppose that the consumer has Cobb-Douglas preferences.uThenU xxx xa b(,)1212 MUUxaxxab11112 MUUxbx xa b22121 Computing Ordinary Demands-a Cobb-Douglas Example.uSo the MRS isMRSdxdxUxUxax

10、xbx xaxbxaba b 211211212121 /.Computing Ordinary Demands-a Cobb-Douglas Example.uSo the MRS isuAt(x1*,x2*),MRS=-p1/p2 soMRSdxdxUxUxaxxbx xaxbxaba b 211211212121 /.Computing Ordinary Demands-a Cobb-Douglas Example.uSo the MRS isuAt(x1*,x2*),MRS=-p1/p2 soMRSdxdxUxUxaxxbx xaxbxaba b 211211212121 /.axbx

11、ppxbpapx21122121*.(A)Computing Ordinary Demands-a Cobb-Douglas Example.u(x1*,x2*)also exhausts the budget sop xp xm1 12 2*.(B)Computing Ordinary Demands-a Cobb-Douglas Example.uSo now we know thatxbpapx2121*(A)p xp xm1 12 2*.(B)Computing Ordinary Demands-a Cobb-Douglas Example.uSo now we know thatxb

12、papx2121*(A)p xp xm1 12 2*.(B)SubstituteComputing Ordinary Demands-a Cobb-Douglas Example.uSo now we know thatxbpapx2121*(A)p xp xm1 12 2*.(B)p xpbpapxm1 12121*.Substituteand getThis simplifies to.Computing Ordinary Demands-a Cobb-Douglas Example.xamab p11*().Computing Ordinary Demands-a Cobb-Dougla

13、s Example.xbmab p22*().Substituting for x1*in p xp xm1 12 2*then givesxamab p11*().Computing Ordinary Demands-a Cobb-Douglas Example.So we have discovered that the mostpreferred affordable bundle for a consumerwith Cobb-Douglas preferencesU xxx xa b(,)1212 is(,)(),().*()xxamab pbmab p1212 Computing

14、Ordinary Demands-a Cobb-Douglas Example.x1x2xamab p11*()xbmab p22*()U xxx xa b(,)1212 Rational Constrained ChoiceuWhen x1*0 and x2*0 and (x1*,x2*)exhausts the budget,and indifference curves have no kinks,the ordinary demands are obtained by solving:u(a)p1x1*+p2x2*=yu(b)the slopes of the budget const

15、raint,-p1/p2,and of the indifference curve containing(x1*,x2*)are equal at(x1*,x2*).Rational Constrained ChoiceuBut what if x1*=0?uOr if x2*=0?uIf either x1*=0 or x2*=0 then the ordinary demand(x1*,x2*)is at a corner solution to the problem of maximizing utility subject to a budget constraint.Exampl

16、es of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Examples of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes Case

17、x1x2xyp22*x10*MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes Casex1x2xyp11*x20*MRS=-1Slope=-p1/p2 with p1 p2.Examples of Corner Solutions-the Perfect Substitutes CaseSo when U(x1,x2)=x1+x2,the mostpreferred affordable bundle is(x1*,x2*)where 0,py)x,x(1*2*1and 2*2*

18、1py,0)x,x(if p1 p2.Examples of Corner Solutions-the Perfect Substitutes Casex1x2MRS=-1Slope=-p1/p2 with p1=p2.yp1yp2Examples of Corner Solutions-the Perfect Substitutes Casex1x2All the bundles in the constraint are equally the most preferred affordable when p1=p2.yp2yp1Examples of Corner Solutions-t

19、he Non-Convex Preferences Casex1x2BetterExamples of Corner Solutions-the Non-Convex Preferences Casex1x2Examples of Corner Solutions-the Non-Convex Preferences Casex1x2Which is the most preferredaffordable bundle?Examples of Corner Solutions-the Non-Convex Preferences Casex1x2The most preferredaffor

20、dable bundleExamples of Corner Solutions-the Non-Convex Preferences Casex1x2The most preferredaffordable bundleNotice that the“tangency solution”is not the most preferred affordablebundle.Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-

21、the Perfect Complements Casex1x2MRS=0U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Perfect Complements Casex1x2MRS=-MRS=0U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Perfect Complements Casex1x2MRS=-MRS=0MRS is undefinedU(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Per

22、fect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1Which is the mostpreferred affordable bundle?Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1The most preferredaffordable bundleExa

23、mples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*(a)p1x1*+p2x2*=mExamples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x2)=minax1,x2x2=ax1x1*x2*(a)p1x1*+p2x2*=m(

24、b)x2*=ax1*Examples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Examples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mExamples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x

25、2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mwhich gives21*1appmx Examples of Kinky Solutions-the Perfect Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mwhich gives.appamx;appmx21*221*1 Examples of Kinky Solutions-the Perfect

26、Complements Case(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitution from(b)for x2*in(a)gives p1x1*+p2ax1*=mwhich givesA bundle of 1 commodity 1 unit anda commodity 2 units costs p1+ap2;m/(p1+ap2)such bundles are affordable.appamx;appmx21*221*1 Examples of Kinky Solutions-the Perfect Complements Casex1x2U(x1,x

27、2)=minax1,x2x2=ax1xmpap112*xampap212*Choosing Taxes:Various TaxesuQuantity tax:on x:(p+t)xuValue tax:on px:(1+t)pxAlso called ad valorem taxuLump sum tax:TuIncome tax:Can be proportional or lump sumIncome Tax vs.Quantity TaxuOriginal budget:p1x1+p2x2=muAfter quantity tax:(p1+t)x1+p2x2=muAt optimal c

28、hoice(x1*,x2*)(p1+t)x1*+p2x2*=m (5.2)Tax revenue:R*=tx1*uWith an income tax,budget is:p1x1+p2x2=m-tx1*Income vs.Quantity TaxuProposition:(x1*,x2*)is affordable under income taxuEquivalent to:prove that(x1*,x2*)satisfies budget constraint under income tax.uOr,budget constraint holds at point(x1*,x2*).p1x1*+p2x2*=m-tx1*uWhich is true according to(5.2).uIt is not an optimal choice because prices are different.uConclusion:The optimal choice must be more preferred to(x1*,x2*)

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|