ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:276.71KB ,
文档编号:5207536      下载积分:22 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5207536.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(晟晟文业)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(中国科学技术大学概率论与数理统计课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

中国科学技术大学概率论与数理统计课件.ppt

1、 大数定律 小结 讨论“概率是频率的稳定值”的确切含义;给出几种大数定律:伯努利大数定律、切比雪夫大数定律、马尔可夫大数定律、辛钦大数定律.大数定律一般形式:若随机变量序列Xn满足:1111()lim1nniiiinXE XnnP则称Xn 服从大数定律.定理5.1.1Xn两两不相关,且Xn方差存在,有共同的上界,则 Xn服从大数定律.证明用到切比雪夫不等式.定义5.1.1 (依概率收敛)PnYY 大数定律讨论的就是依概率收敛.lim1nnP YY若对任意的 0,有则称随机变量序列Yn依概率收敛于Y,记为定理5.1.2 若 ,PnXa PnYb 则Xn与Yn的加、减、乘、除依概率收敛到 a 与

2、b 的加、减、乘、除.PnYb 推论5.1.3 (多变量函数)PnXa 设g(x,y)在点(a,b)连续,则,又设函数,()(,)Pnng X Yg a b 定理5.1.4(伯努利大数定律)设 n 是n重伯努利试验中事件A出现的次数,每次试验中 P(A)=p,则对任意的 0,有lim1nnPpn 定理5.1.5若随机变量序列Xn满足:则 Xn服从大数定律.211Var 0niiXn(马尔可夫条件)定理5.1.6若随机变量序列Xn独立同分布,且Xn的数学期望存在,则 Xn服从大数定律.(1)伯努利大数定律是切比雪夫大数定律的特例.(2)切比雪夫大数定律是马尔可夫大数定律的特例.(3)伯努利大数定

3、律是辛钦大数定律的特例.讨论独立随机变量和的极限分布,本节指出极限分布为正态分布.设 Xn 为独立随机变量序列,记其和为1niinYX定理5.2.1 林德贝格勒维中心极限定理设 Xn 为独立同分布随机变量序列,数学期望为,方差为 20,则当 n 充分大时,有1lim()nniinnPxxX应用之例:正态随机数的产生;误差分析1/1(0,1)niinXnN1(0,1)niinnXN/(0,1)nXN例5.2.1 每袋味精的净重为随机变量,平均重量为 100克,标准差为10克.一箱内装200袋味精,求一箱味精的净重大于20500克的概率?解:设箱中第 i 袋味精的净重为 Xi,则Xi 独立同分布,

4、且 E(Xi)=100,Var(Xi)=100,由中心极限定理得,所求概率为:200120500200 100205001200 100iiPX 1(3.54)=0.0002故一箱味精的净重大于20500克的概率为0.0002.(很小)例5.2.2 设 X 为一次射击中命中的环数,其分布列为求100次射击中命中环数在900环到930环之间的概率.XP10 9 8 7 6 0.8 0.1 0.05 0.02 0.03解:设 Xi 为第 i 次射击命中的环数,则Xi 独立同分布,且 E(Xi)=9.62,Var(Xi)=0.82,故10019301009.629001009.62900930100

5、0.821000.82iiPX(3.53)(6.85)=0.00021定理5.2.2 棣莫弗拉普拉斯中心极限定理设n 为服从二项分布 b(n,p)的随机变量,则当 n 充分大时,有(1)lim()nnnpnppPxx是林德贝格勒维中心极限定理的特例.二项分布是离散分布,而正态分布是连续分布,所以用正态分布作为二项分布的近似时,可作如下修正:1212210.50.50.50.5 (1)(1)nnP kkP kkknpknpnppnpp 中心极限定理的应用有三大类:ii)已知 n 和概率,求x;iii)已知 x 和概率,求 n.i)已知 n 和 x,求概率;例5.2.3 100个独立工作(工作的概

6、率为0.9)的部件组成一个系统,求系统中至少有85个部件工作的概率.解:用由此得:Xi=1表示第i个部件正常工作,反之记为Xi=0.又记Y=X1+X2+X100,则 E(Y)=90,Var(Y)=9.185 0.5 90850.9669.P Y 例5.2.4 有200台独立工作(工作的概率为0.7)的机床,每台机床工作时需15kw电力.问共需多少电力,才可 有95%的可能性保证正常生产?解:用设供电量为x,则从Xi=1表示第i台机床正常工作,反之记为Xi=0.又记X=X1+X2+X200,则 E(X)=140,Var(X)=42./15 0.5 140150.9542xPXx 2252.x中解

7、得例5.2.5 用调查对象中的收看比例 k/n 作为某电视节 目的收视率 p 的估计。要有 90 的把握,使k/n与p 的差异不大于0.05,问至少要调查多少对象?解:用根据题意Xn表示n 个调查对象中收看此节目的人数,则20.90/0.050.05/(1)1nPXnpn pp0.05/(1)1.645n pp从中解得Xn 服从 b(n,p)分布,k 为Xn的实际取值。又由0.25(1)pp可解得270.6nn=271例5.2.6 设每颗炮弹命中目标的概率为0.01,求500发炮弹中命中 5 发的概率.解:设 X 表示命中的炮弹数,则X b(500,0.01)55495500(1)(5)0.0

8、10.99P XC0.17635(2)应用正态逼近:P(X=5)=P(4.5 X 0,有22211()()d0liminnxBniniixp x xB11()lim()niiinnXBPxx林德贝格条件则定理5.2.4 李雅普诺夫中心极限定理设Xn 为独立随机变量序列,若存在 0,满足:21210limninniiBE X11()lim()niiinnXBPxx李雅普诺夫条件则林德贝格条件较难验证.例5.2.7 设 X1,X2,.,X99相互独立,且服从不同的 0-1分布试求解:设 X100,X101,.相互独立,且与X99同分布,则可以验证Xn满足=1的李雅普诺夫条件,且99991149.56049.56012.57350.00516.66516.665iiiiXPXP 11,100iiiP Xp 99160iiXP99991149.5,16.665,iiiiEXVarX由此得基本概念基本概念:依概率收敛、契比雪夫大数定理、伯努利大数定理、辛钦大数定理、独立同分布的中心极限定理、李雅普诺夫中心极限定理、棣莫弗拉普拉斯中心极限定理;基本概念基本概念:中心极限定理的应用;2,5,8

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|