1、专题03 牛顿定律(解析版)近5年(2017-2021)高考物理试题分类解析 2021浙江卷第4题. 2021年5月15日,天问一号着陆器在成功着陆火星表面的过程中,经大气层的减速,速度从减为;打开降落伞后,经过速度进一步减为;与降落伞分离,打开发动机减速后处于悬停状态;经过对着陆点的探测后平稳着陆。若打开降落伞至分离前的运动可视为竖直向下运动,则着陆器()A. 打开降落伞前,只受到气体阻力的作用B. 打开降落伞至分离前,受到的合力方向竖直向上C. 打开降落伞至分离前,只受到浮力和气体阻力的作用D. 悬停状态中,发动机喷火的反作用力与气体阻力是平衡力【答案】B【解析】A打开降落伞前,在大气层中
2、做减速运动,则着陆器受大气阻力作用以及火星的引力作用,选项A错误;B打开降落伞至分离前做减速运动,则其加速度方向与运动方向相反,加速度方向向上,则合力方向竖直向上,B正确;C打开降落伞至分离前,受到浮力和气体的阻力以及火星的吸引力作用,选项C错误;D悬停状态中,发动机喷火的反作用力是气体对发动机的作用力,由于还受到火星的吸引力,则与气体的阻力不是平衡力,选项D错误。故选B。全国1卷第题11.我国自主研制了运-20重型运输机。飞机获得的升力大小F可用描写,k为系数;v是飞机在平直跑道上的滑行速度,F与飞机所受重力相等时的v称为飞机的起飞离地速度,已知飞机质量为时,起飞离地速度为66 m/s;装载
3、货物后质量为,装载货物前后起飞离地时的k值可视为不变。(1)求飞机装载货物后的起飞离地速度;(2)若该飞机装载货物后,从静止开始匀加速滑行1 521 m起飞离地,求飞机在滑行过程中加速度的大小和所用的时间。【答案】(1);(2)2m/s2,【解析】(1)空载起飞时,升力正好等于重力:满载起飞时,升力正好等于重力:由上两式用比例法解得:或公式法解由解得,由解得。代入,得,代入数据解得(2)满载货物的飞机做初速度为零的匀加速直线运动,所以解得:由加速的定义式变形得:解得:2020全国2卷第12题12.如图,一竖直圆管质量为M,下端距水平地面的高度为H,顶端塞有一质量为m的小球。圆管由静止自由下落,
4、与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直。已知M =4m,球和管之间的滑动摩擦力大小为4mg, g为重力加速度的大小,不计空气阻力。(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度;(3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件。【答案】(1)a1=2g,a2=3g;(2);(3)【解析】(1)管第一次落地弹起的瞬间,小球仍然向下运动。设此时管的加速度大小为a1,方向向下;球的加速度大小为a2,方向向上;球与管之间的摩擦力大小为f,由牛顿运动定
5、律有Ma1=Mg+f ma2= f mg 联立式并代入题给数据,得a1=2g,a2=3g(2)管第一次碰地前与球的速度大小相同。由运动学公式,碰地前瞬间它们的速度大小均为方向均向下。管弹起的瞬间,管的速度反向,球的速度方向依然向下。设自弹起时经过时间t1,管与小球的速度刚好相同。取向上为正方向,由运动学公式v0a1t1= v0+a2t1联立式得设此时管下端高度为h1,速度为v。由运动学公式可得由式可判断此时v0。此后,管与小球将以加速度g减速上升h2,到达最高点。由运动学公式有设管第一次落地弹起后上升的最大高度为H1,则H1= h1+ h2联立式可得易错点:没有考虑速度相等前和速度相等后两个阶
6、段运动情况不同,直接用公式算最大高度。(3)设第一次弹起过程中球相对管的位移为x1。在管开始下落到上升H1这一过程中,由动能定理有Mg(HH1)+mg(HH1+x1)4mgx1=0联立式并代入题给数据得同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x2为设圆管长度为L。管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x1+ x2L联立式,L应满足条件为2020全国3卷第12题12.如图,相距L=11.5m的两平台位于同一水平面内,二者之间用传送带相接。传送带向右匀速运动,其速度的大小v可以由驱动系统根据需要设定。质量m=10 kg的载物箱(可视为质点),以初速
7、度v0=5.0 m/s自左侧平台滑上传送带。载物箱与传送带间的动摩擦因数= 0.10,重力加速度取g =10m/s2。(1)若v=4.0 m/s,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v=6.0m/s,载物箱滑上传送带后,传送带速度突然变为零。求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量。【答案】(1)2.75s;(2) ,;(3)0【解析】(1)传送带的速度为时,载物箱在传送带上先做匀减速运动,设其加速度为a,由牛顿第二定律有: 设载物箱滑上传送带后匀减速运动的距离为x1,由运动学公式有联立式,代入题给数据得x1=4.5
8、m;因此,载物箱在到达右侧平台前,速度先减小至v,然后开始做匀速运动,设载物箱从滑上传送带到离开传送带所用的时间为t1,做匀减速运动所用的时间为t2,由运动学公式有 联立式并代入题给数据有t1=2.75s;(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v1,当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v2.由动能定理有由式并代入题给条件得,(3)传送带的速度为时,由于,载物箱先做匀加速运动,加速度大小仍a。设载物箱做匀加速运动通过的距离为x2,所用时间为t3,由运动学公式有 联立式并代入题给数据得t3=1.0s x2=5.5m 因此载物箱
9、加速运动1.0s、向右运动5.5m时,达到与传送带相同的速度。此后载物箱与传送带共同匀速运动的时间后,传送带突然停止,设载物箱匀速运动通过的距离为x3有 由式可知即载物箱运动到右侧平台时速度大于零,设v3,由运动学公式有, 设载物箱通过传远带的过程中,传送带对它的冲量为I,由动量定理有代题给数据得2020江苏省卷第5题5.中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量.某运送防疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F.若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为( )A. F
10、 B. C. D.【答案】5. C【解析】第2节对第3节车厢的牵引力为F=38ma倒数第3节对倒数第2节车厢的牵引力F=2 ma所以,C正确。2020山东卷第1题1.一质量为m的乘客乘坐竖直电梯下楼,其位移s与时间t的关系图像如图所示。乘客所受支持力的大小用FN表示,速度大小用v表示。重力加速度大小为g。以下判断正确的是()A. 0t1时间内,v增大,FNmgB. t1t2 时间内,v减小,FNmgC. t2t3 时间内,v增大,FN mg【答案】D【解析】A由于s-t图像的斜率表示速度,可知在0t1时间内速度增加,即乘客的加速度向下,处于失重状态,则FNmg,选项C错误,D正确;故选D。20
11、20山东卷第16题16.单板滑雪U型池比赛是冬奥会比赛项目,其场地可以简化为如图甲所示的模型: U形滑道由两个半径相同的四分之一圆柱面轨道和一个中央的平面直轨道连接而成,轨道倾角为17.2。某次练习过程中,运动员以vM=10 m/s的速度从轨道边缘上的M点沿轨道的竖直切面ABCD滑出轨道,速度方向与轨道边缘线AD的夹角=72.8,腾空后沿轨道边缘的N点进入轨道。图乙为腾空过程左视图。该运动员可视为质点,不计空气阻力,取重力加速度的大小g=10 m/s2, sin72.8=0.96,cos72.8=0.30。求:(1)运动员腾空过程中离开AD的距离的最大值d;(2)M、N之间的距离L。【答案】(
12、1)4.8 m;(2)12 m【解析】(1)在M点,设运动员在ABCD面内垂直AD方向的分速度为v1,由运动的合成与分解规律得 设运动员在ABCD面内垂直AD方向的分加速度为a1,由牛顿第二定律得mgcos17.2=ma1 由运动学公式得 联立式,代入数据得d=4.8 m (2)在M点,设运动员在ABCD面内平行AD方向的分速度为v2,由运动的合成与分解规得v2=vMcos728 设运动员在ABCD面内平行AD方向的分加速度为a2,由牛顿第二定律得mgsin17.2=ma2 设腾空时间为t,由运动学公式得 联立式,代入数据得L=12 m 2020上海等级考第15题15、质量m= 1.67102
13、7kg的质子在高能粒子加速器中被加速为动能Ek= 1.610-10J. 某同学根据Ek= mv2算出质子的速度4.38108m/s (计算无误)。此速度值不合理之处是_,说明理由_。答案速度超过光速,牛顿运动定律只能适用于宏观、低速的情况【解析】速度接近或等于光速,Ek= mv2不再适用。速度超过光速也不可能。考察知识牛顿运动定律的应用。核心素养科学思维(数据分析和质疑能力,这个能力的考察是以往三维目标里没有的!)2020年7月浙江第1题1.国际单位制中电荷量的单位符号是C,如果用国际单位制基本单位的符号来表示,正确的是()A. B. C. D. 【答案】B【解析】根据电荷量公式q=It可知,
14、电流I的单位是A,时间t的单位是s,故用国际单位制的基本单位表示电量的单位为As,故B正确,ACD错误。故选B。2020浙江第20题20.如图1所示,有一质量的物件在电机的牵引下从地面竖直向上经加速、匀速、匀减速至指定位置。当加速运动到总位移的时开始计时,测得电机的牵引力随时间变化的图线如图2所示,末速度减为0时恰好到达指定位置。若不计绳索的质量和空气阻力,求物件:(1)做匀减速运动的加速度大小和方向;(2)匀速运动的速度大小;(3)总位移的大小。【答案】(1),竖直向下;(2)1m/s;(3)40m【解析】(1)由图2可知026s内物体匀速运动,26s34s物体减速运动,在减速运动过程根据牛
15、顿第二定律有根据图2得此时FT=1975N,则有,方向竖直向下。(2)结合图2根据运动学公式有(3)根据图像可知匀速上升的位移匀减速上升的位移匀加速上升的位移为总位移的,则匀速上升和减速上升的位移为总位移的,则有所以总位移为h=40m。1. 2019年全国2卷16题物块在轻绳的拉动下沿倾角为30的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为,重力加速度取10m/s2。若轻绳能承受的最大张力为1 500 N,则物块的质量最大为A150kgBkgC200 kgDkg【答案】16A【解析】牛顿定律,代入数据得,A正确。2.2019年全国2卷25题.(20分)一质量为m=20
16、00 kg的汽车以某一速度在平直公路上匀速行驶。行驶过程中,司机忽然发现前方100 m处有一警示牌。立即刹车。刹车过程中,汽车所受阻力大小随时间变化可简化为图(a)中的图线。图(a)中,0t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8 s;t1t2时间段为刹车系统的启动时间,t2=1.3 s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t2时刻开始,汽车第1 s内的位移为24 m,第4 s内的位移为1 m。(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线;(2)求t2时刻汽车的速
17、度大小及此后的加速度大小;(3)求刹车前汽车匀速行驶时的速度大小及t1t2时间内汽车克服阻力做的功;司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?【解析】25(1)v-t图像如图所示。(2)设刹车前汽车匀速行驶时的速度大小为v1,则t1时刻的速度也为v1,t2时刻的速度也为v2,在t2时刻后汽车做匀减速运动,设其加速度大小为a,取t=1s,设汽车在t2+n-1t内的位移为sn,n=1,2,3,。若汽车在t2+3tt2+4t时间内未停止,设它在t2+3t时刻的速度为v3,在t2+4t时刻的速度为v4,由运动学有代入数据得24
18、=v2-a/2联立式,代入已知数据解得这说明在t2+4t时刻前,汽车已经停止。因此,式不成立。由于在t2+3tt2+4t内汽车停止,由运动学公式联立,代入已知数据解得解得,v2=28 m/s 或者,v2=29.76 m/s (3)设汽车的刹车系统稳定工作时,汽车所受阻力的大小为f1,由牛顿定律有f1=ma 在t1t2时间内,阻力对汽车冲量的大小为 由动量定理有I=mv1-mv2 由动量定理,在t1t2时间内,汽车克服阻力做的功为 联立式,代入已知数据解得v1=30 m/s 从司机发现警示牌到汽车停止,汽车行驶的距离s约为 联立,代入已知数据解得s=87.5 m 3. 2019年全国3卷20题如
19、图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力。细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取g=10 m/s2。由题给数据可以得出A木板的质量为1 kgB2 s4 s内,力F的大小为0.4 NC02 s内,力F的大小保持不变D物块与木板之间的动摩擦因数为0.2【答案】20AB【解析】t=4s5s,外力撤去,只受摩擦力,从图象知,加速度0.2m/s2.根据牛顿定律 ,得m=1kg.A正确;
20、2 s4 s内,从图象知,加速度2m/s2,根据牛顿定律 F-,得F=0.4N,B正确;4. 2019年北京卷24题(20分)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g。(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W。(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数。a设雨滴的密度为,推导雨滴下落趋近的最大速度vm与半径r的关系式;b示意图中画出了半径为r1、r2(r1r2)的雨滴在空气中无初速下落的vt图线,
21、其中_对应半径为r1的雨滴(选填、);若不计空气阻力,请在图中画出雨滴无初速下落的vt图线。(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。【答案】24(20分)(1)根据动能定理可得(2)a根据牛顿第二定律得当加速度为零时,雨滴趋近于最大速度vm雨滴质量由a=0,可得,雨滴最大速度b如答图2(3)根据题设条件:大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。以下只考虑雨滴下落的定向运动。简化的圆盘模型如答图3。
22、设空气分子与圆盘碰撞前后相对速度大小不变。在t时间内,与圆盘碰撞的空气分子质量为以F表示圆盘对气体分子的作用力,根据动量定理,有得由牛顿第三定律,可知圆盘所受空气阻力采用不同的碰撞模型,也可得到相同结论。5. 2019年天津卷9(1)题. 第26届国际计量大会决定,质量单位“千克”用普朗克常量定义,“国际千克原器”于2019年5月20日正式“退役”的数值为,根据能量子定义,的单位是_,该单位用国际单位制中的力学基本单位表示,则为_。【答案】9.(18分)(1) 【解析】根据,得,所以的单位是。根据W=Fx和F=ma,所以6. 2019年天津卷10题.(16分)完全由我国自行设计、建造的国产新型
23、航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板是与水平甲板相切的一段圆弧,示意如图2,长,水平投影,图中点切线方向与水平方向的夹角()。若舰载机从点由静止开始做匀加速直线运动,经到达点进入。已知飞行员的质量,。求:(1)舰载机水平运动的过程中,飞行员受到的水平力所做功;(2)舰载机刚进入时,飞行员受到竖直向上的压力多大。【答案】 10.(16分)(1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为,则有根据动能定理,有联立式,代入数据,得(2)设上翘甲板所对应的圆弧
24、半径为,根据几何关系,有由牛顿第二定律,有联立式,代入数据,得【解析】求圆弧半径为,如下图,,所以另外解法:,得=2500(m/s)2根据动能定理,功7. 2019年江苏卷15题(16分)如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐A与B、B与地面间的动摩擦因数均为。先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下最大静摩擦力等于滑动摩擦力,重力加速度为g求:(1)A被敲击后获得的初速度大小vA;(2)在左边缘再次对齐的前、后,B运动加速度的大小aB、aB;
25、(3)B被敲击后获得的初速度大小vB【解答】15(1)由牛顿运动定律知,A加速度的大小aA=g匀变速直线运动 2aAL=vA2解得(2)设A、B的质量均为m对齐前,B所受合外力大小F=3mg由牛顿运动定律F=maB,得 aB=3g对齐后,A、B所受合外力大小F=2mg由牛顿运动定律F=2maB,得aB=g(3)经过时间t,A、B达到共同速度v,位移分别为xA、xB,A加速度的大小等于aA则v=aAt,v=vBaBt且xBxA=L解得【解析】从B获得速度到A、B速度相等并且A到B的边缘,示意图如下:从上图可以看出:8. 2018年全国卷第24题24(12分)汽车A在水平冰雪路面上行驶,驾驶员发现
26、其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B的质量分别为kg和kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小.求(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小。【解答】24(12分)(1)设B车质量为mB,碰后加速度大小为aB,根据牛顿第二定律有 式中是汽车与路面间的动摩擦因数。设碰撞后瞬间B车速度的大小为,碰撞后滑行的距离为。由运动学公式有 联立式并利用题给数据得 (2)设A车的质量为mA
27、,碰后加速度大小为aA。根据牛顿第二定律有 设碰撞后瞬间A车速度的大小为,碰撞后滑行的距离为。由运动学公式有 设碰撞后瞬间A车速度的大小为,两车在碰撞过程中动量守恒,有 联立式并利用题给数据得 9. 2017年全国卷第16题16如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。若保持F的大小不变,而方向与水平面成60角,物块也恰好做匀速直线运动。物块与桌面间的动摩擦因数为ABCD【答案】C【解析】F水平时,F倾斜时,解得10. 2017年全国卷第24题24(12分)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1s0)处分别设置一个挡板和一面小旗,如图所示。训练时
28、,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板:冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗。训练要求当冰球到达挡板时,运动员至少到达小旗处。假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v1。重力加速度为g。求(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度。【解答】24.(1)设冰球的质量为m,冰球与冰面之间的动摩擦因数为,由动能定理得 mg= m- m 解得 = (2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小。设这种情况下,冰球和运动员的加速度大小分别
29、为和,所用的时间为t,由运动学公式得 -=2 -=t = 联立式得= 11. 2018年0123北京第19题. 伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展。利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升。斜面上先后铺垫三种粗糙程度逐渐减低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3。根据三次实验结果的对比,可以得到的最直接的结论是A如果斜面光滑,小球将上升到与O点等高的位置B如果小球不受力,它将一直保持匀速运动或静止状态C如果小球受到力的作用,它的运动状态将发生改变D小球受到的力一定时,质量越
30、大,它的加速度越小【解析】从实验可以得到,斜面的阻力越小,小球上升的位置越高,如果不受阻 力,就会升到相等的高度,其它选项都不是由实验直接得到的,A正确,BCD错误。【答案】A12. 2018年北京第20题根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球A到最高点时,水平方向的加速度和速度均为零B到最高点时,水平方向的
31、加速度和速度均不为零C落地点在抛出点东侧D落地点在抛出点西侧【答案】20D【解析】到最高点时,水平方向的加速度为零,因为该“力”与竖直方向的速度大小成正比。速度不为零,因为上升过程该“力”水平向西。因为上升过程向西加速运动,则下落过程向西减速运动,所以落地点在抛出点西侧。13. 2017年天津第10题10(16分)如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为mA=2 kg、mB=1 kg。初始时A静止与水平地面上,B悬于空中。先将B竖直向上再举高h=1.8 m(未触及滑轮)然后由静止释放。学&科网一段时间后细绳绷直,A、B以大小相等的速度一起运
32、动,之后B恰好可以和地面接触。取g=10 m/s2。(1)B从释放到细绳绷直时的运动时间t;(2)A的最大速度v的大小;(3)初始时B离地面的高度H。【答案与解析】10(16分)(1)B从释放到细绳刚绷直前做自由落体运动,有代入数据解得T=0.6 s (2)设细绳绷直前瞬间B速度大小为vB,有细绳绷直瞬间,细绳张力远大于A、B的重力,A、B相互作用,由动量守恒得之后A做匀减速运动,所以细绳绷直后瞬间的速度v即为最大速度,联立式,代入数据解得v=2 m/s(3)细绳绷直后,A、B一起运动,B恰好可以和地面接触,说明此时A、B的速度为零,这一过程中A、B组成的系统机械能守恒,有代入数据解得H=0.
33、6 m14. 2017年海南第3题3汽车紧急刹车后,停止转动的车轮在水平地面上滑动直至停止,在地面上留下的痕迹称为刹车线。由刹车线的长短可知汽车刹车前的速度。已知汽车轮胎与地面之间的动摩擦因数为0.80,测得刹车线长25 m。汽车在刹车前的瞬间的速度大小为(重力加速度g取10m/s2)( )A10 m/s B20 m/s C30 m/s D40 m/s【答案】B【解析】,导入数据得20 m/s15. 2017年海南第9题9如图,水平地面上有三个靠在一起的物块P、Q和R,质量分别为m、2m和3m,物块与地面间的动摩擦因数都为。用大小为F的水平外力推动物块P,记R和Q之间相互作用力与Q与P之间相互
34、作用力大小之比为k。下列判断正确的是( )A若0,则k= B若0 ,则C若=0,则 D若=0,则【解析】若0 ,所以若0 ,所以【答案】BD16. 2017年海南第14题14(16分)一轻弹簧的一端固定在倾角为的固定光滑斜面的底部,另一端和质量为m的小物块a相连,如图所示。质量为的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动。经过一段时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0。弹簧的形变始终在弹性限度内,重力加速度大小为g。求(1)弹簧的劲度系数;(2)物块b加速度的大小;(3)在物块a、b分离前,外力大小随时间变化的关系式。【解析】(1)受力分析可得,由胡克定律F=kx0 得弹簧的劲度系数(2)设分离时,a、b的位移为x1,时间为t1,则,再过时间t1,位移为x0,则,所以分离时,因为a、b间無作用力,但加速度相等,则a的加速度为,所以物块b加速度的大小为(3)整体法,其中把x和k、a值代入解得: =。23
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。