ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:632.27KB ,
文档编号:5311934      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5311934.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(meimeiwenku)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2023年中考数学二轮专题复习-二次函数压轴题(特殊四边形问题).docx)为本站会员(meimeiwenku)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2023年中考数学二轮专题复习-二次函数压轴题(特殊四边形问题).docx

1、2023年中考数学二轮专题复习-二次函数压轴题(特殊四边形问题)一、解答题1已知二次函数的图象与轴的交于A、B(1,0)两点,与轴交于点(1)求二次函数的表达式及点坐标;(2)是二次函数图象上位于第三象限内的点,若点的横坐标为,的面积为,求与之间的函数关系式,并写出的面积取得最大值时点的坐标;(3)是二次函数图象对称轴上的点,在二次函数图象上是否存在点使以、为顶点的四边形是平行四边形?若有,请写出点的坐标(不写求解过程)2如图,点在抛物线上,过点作与轴平行的直线交抛物线于点,延长分别与抛物线相交于点,连接,设点的横坐标为,且(1).当时,求点的坐标;(2).当为何值时,四边形的两条对角线互相垂

2、直;(3).猜想线段与之间的数量关系,并证明你的结论3如图,在平面直角坐标系中,直线yx5与x轴相交于点A,与y轴相交于点B,抛物线yax2+6x+c经过A、B两点(1)求这条抛物线的解析式;(2)设抛物线与x轴的另一个交点为C,点P是抛物线上一点,点Q是直线AB上的一点,当四边形BCPQ是平行四边形时,求点P的坐标;(3)在(2)的条件下,连接QC,在QCB的内部作射线CD与抛物线的对称轴相交于点D,且使得QCDABC,请你直接写出线段DQ的长度4如图1,二次函数与x轴交于点A(2,0)、点B(点A在点B左侧),与y轴交于点C(0,3),(1)求二次函数解析式;(2)如图2,点P是直线BC上

3、方抛物线上一点,PDy轴交BC于D,PEBC交x轴于点E,求PD+BE的最大值及此时点P的坐标;(3)在(2)的条件下,当PD+BE取最大值时,连接PC,将绕原点O顺时针旋转至;将原抛物线沿射线CA方向平移个单位长度得到新抛物线,点M在新抛物线的对称轴上,点N为平面内任意一点,当以点M,N,D为顶点的四边形是矩形时,请直接写出点N的坐标5如图(1),二次函数的图象与轴、直线的交点分别为点、图(1)图(2)(备用图)(1)_,_,=_;(2)连接AB,点是抛物线上一点(异于点A),且,求点的坐标;(3)如图(2),点、是线段上的动点,且设点的横坐标为过点、分别作轴的垂线,与抛物线相交于点、,连接

4、当取得最大值时,求的值并判断四边形的形状;连接、,求为何值时,取得最小值,并求出这个最小值6如图1,抛物线y=x22bxc(b0)与y轴交于点C,点P为抛物线顶点,分别作点P,C关于原点O的对称点P,C,顺次连接四点得四边形PC PC(1)当b=c=1时,求顶点P的坐标;(2)当b=2,四边形PC PC为矩形时(如图2),求c的值;(3)请你探究:四边形PCPC能否成为正方形?若能,求出符合条件的b,c的值;若不能,请说明理由7如图,抛物线与x轴交于A,B两点(点A在点B的左侧),顶点为D点P为对称轴右侧抛物线上的一个动点,其横坐标为m,直线AD交y轴与点C,过点P作交x轴于点F,轴,交直线A

5、D于点E,交直线DF于点M(1)求直线AD的表达式及点C的坐标;(2)当,求m的值;(3)是探究点P在运动过程中,是否存在m,使四边形AFPE是菱形,若存在,请直接写出点P的坐标;若不存在,请说明理由8如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(-1,0),与y轴交于点C若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说

6、明理由(3)当P,Q运动到t秒时,APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标9如图、图、图,在平面直角坐标系中,抛物线y=a(x1)2+2a与抛物线y=(a2)(x1)2+a分别与y轴交于点A、B,与对称轴x=1交于点C、D作点A关于直线x=1的对称点A,连接AA,以AB、AA为边作矩形ABEA设ACD与矩形ABEA重叠部分图形的面积为S(1)用含a的代数式表示线段CD的长(2)求AB=2AA时的a值(3)当ACD与矩形ABEA重叠部分图形为三角形时,求S与a的函数关系式(4)作点D关于直线AA的对称点D,连接AD、AD、AD、AD,得到四边形

7、ADAD直接写出四边形ADAD与矩形ABEA同时是正方形时的a值10如图所示,在平面直角坐标系中,抛物线C1;yax2+bx6经过点A(3,0)和点B(1,0),顶点为D(1)求抛物线C1的函数表达式;(2)将抛物线C1绕坐标轴上一点P旋转180得到抛物线C2,点AD的对应点分别为、,是否存在以AD为边,且以A、D、为顶点的四边形是矩形?若存在,请求出抛物线C2的函数表达式,若不存在,请说明理由11如图,已知二次函数的图像交轴于点,交轴于点(1)求这个二次函数的表达式;(2)如图,点从点出发,以每秒个单位长度的速度沿线段向点运动,点从点出发,以每秒个单位长度的速度沿线段向点运动,点,同时出发设

8、运动时间为秒()当为何值时,的面积最大?最大面积是多少?(3)已知是抛物线上一点,在直线上是否存在点,使以,为顶点的四边形是平行四边形?若存在,直接写出点坐标;若不存在,请说明理由12如图,在平面直角坐标系中,过A(2,0),C(0,6)两点的抛物线yx2axb与x轴交于另一点B,点D是抛物线的顶点(1)求a、b的值;(2)点P是x轴上的一个动点,过P作直线l/AC交抛物线于点Q随着点P的运动,若以A、P、Q、C为顶点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;(3)在直线AC上是否存在一点M,使BDM的周长最小,若存在,请找出点M并求出点M的坐标若不存在,请说明理由备用图13如图,

9、边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线顶点E在直线l上(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由14如图,二次函数yax2bxc的图象与x轴相交于点A(1,0)、B(3,0)两点,与y轴相交于点C(0,3)(1)求此二次函数的解析式;(2

10、)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并证明你的结论15如图,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tanACB=2,将矩形OABC绕点O按顺时针方向旋转90后得到矩形ODEF点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F(1)求抛物线所对应函数的表达式;(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;(3

11、)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;(4)在抛物线的对称轴上是否存在一点H,使得HAHC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由16综合与探究已知:如图,二次函数的图象的顶点为,与x轴交于B,A两点,与y轴交于点,点E为抛物线对称轴上的一个动点(1)求二次函数的解析式;(2)当的周长最小时,点E的坐标为_;(3)当点E在x轴上方且时,试判断与的位置关系,并说明理由;(4)若点N是y轴上的一点,坐标平面内是否存在P,使以D、B、N、P为顶点的

12、四边形为矩形?若存在,请直接写出满足条件的点P的坐标;若不存在,请说明理由17如图,在平面直角坐标系中,已知抛物线交x轴于点A、B,交y轴于点C(1)求线段BC的长;(2)点P为第三象限内抛物线上一点,连接BP,过点C作交x轴于点E,连接PE,求面积的最大值及此时点P的坐标;(3)在(2)的条件下,以y轴为对称轴,将抛物线对称,对称后点P的对应点为点,点M为对称后的抛物线对称轴上一点,N为平面内一点,是否存在以点A、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标,若不存在,则请说明理由参考答案:1(1)y=x2+2x-3,A点坐标为(-3,0)(2)与之间的函数关系式为:S=-(m+)

13、2+或S=;的面积取得最大值时点的坐标为(-,-);(3)点的坐标为:(2,5)或(0,-3)或(-2,-3)2解:(1)点在抛物线上,且,点与点关于轴对称,设直线的解析式为,解方程组,得(2)当四边形的两对角线互相垂直时,由对称性得直线与轴的夹角等于所以点的横、纵坐标相等, 5分这时,设,代入,得,即当时,四边形的两条对角线互相垂直(3)线段点在抛物线,且,得直线的解析式为,解方程组,得点由对称性得点,3(1)yx26x5;(2)P(4,3);(3)84(1)(2)当时,PD+BE的最大值为,点P的坐标为(3,)(3)当以点M,N,D为顶点的四边形是矩形时,点N的坐标为(, )或(,)或(,

14、)或(,)5(1),;(2);(3)时,取得最大值;四边形是平行四边形;当时,最小,这个最小值为6(1)F(1,2);(2);(3)能, c=1, b=17(1),(2)或(3)存在,或8(1)C(0,-4)(2)存在点E的坐标为(-,0)或(-,0)或(-1,0)或(7,0)(3)四边形APDQ为菱形,D点坐标为(-,-)9(1)CD=;(2)AB=2AA时的a值为4;(3)当a0时,S=1a;当0a1时,S=1a;当1a时,S=a1;当a2时,S=a1(4)四边形ADAD与矩形ABEA同时是正方形时的a值为1或310(1)y2x28x6,(2)y2x24x或y2x28x+11(1)(2)当时,的面积最大,最大面积是(3)存在,的坐标为或或或12(1)a=2,b=6;(2)Q(4,6),Q或;(3)存在一点M,使BDM的周长最小13(1)A(2,0),D(3,0),;(2)();(3)E(,)或E(1,)14(1)yx22x3(2)正方形15(1)y=x2+x+2;(2)存在,y=0.5x-1;(3)存在,当点P为P1(0,1)时,点Q为Q1(2,2),Q2(2,2);当点P为P2(1,2)时,点Q为Q3(3,2),Q4(1,2);(4)存在,H(0.5,3)16(1)(2)(3)(4)存在,17(1)(2)面积的最大值为4;此时P的坐标为(3)或13

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|