1、空间向量与立体几何的教学反思空间向量与立体几何的教学反思 本章,是数学必修4“平面向量”在空间的推广,又是数学必修2“立体几何初步”的延续,努力使学生将运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。一、其教育价值体现在:空间向量为处理立体几何问题提供了新的视角(“立体几何初步”侧重于定性研究,本章则侧重于定量研究)。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。进一步体会向量方法在研究几何问题中的作用。向量是一个重要的代数研究对象,引入向量运算,使数学的运算对象发生了一个重大跳跃:从数
2、、字母与代数式到向量,运算也从一元到多元。向量又是一个几何对象,本身既有方向,又有长度;是沟通代数与几何的一个桥梁,是一个重要的数学与物理模型,这些也为进一步学习向量和研究向量奠定了一定的基础。二、与原大纲教材的比较:原大纲目标表述新课标目标表述1.理解空间向量的概念掌握空间向量的加法、减法和数乘.2.了解空间向量基本定理;理解空间向量的坐标的概念,掌握空间向量运算.3.掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式.4. 理解直线的方向向量、平面的法向量、向量在平面内的射影.5.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念(
3、对于异面直线的距离,只要求会利用给出公垂线计算距离);6.掌握直线和平面垂直的性质定理;掌握两个平面平行的判定定理和性质定理;掌握两个平面垂直的判定定理和性质定理.1.经历向量及其运算由平面向空间推广的过程 .2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示 .3.掌握空间向量的线性运算及其坐标表示 .4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.5.理解直线的方向向量与平面的法向量.6.能用向量语言表述线线、线面、面面的垂直、平行关系 . 7.能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理) .8.能用向
4、量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用标准中要求让学生经历向量及其运算由平面向空间推广的过程,目的是让学生体会数学的思想方法(类比与归纳),体验数学在结构上的和谐性与在推广过程中的问题,并尝试如何解决这些问题。同时在这一过程中,也让学生见识一个数学概念的推广可能带来很多更好的性质。掌握空间向量的基本概念及其性质是基本要求,是后续学习的前提。利用向量来解决立体几何问题是学习这部分内容的重点,要让学生体会向量的思想方法,以及如何用向量来表示点、线、面及其位置关系。新老课程相比,该部分减少了大量的综合证明的内容,重在对于图形的把握,发展空间概念,运用向量方法解决计算问题,这样的调整,将使得学生把精力更多地放在理解数学的细想方法和本质方面,更加注意数学与现实世界的联系和应用,重在发展学生的数学思维能力,发展学生的数学应用意识,提高学生自觉运用数学分析问题、解决问题的能力,为学生日后的进一步学习,或工作、生活中应用数学,打下更好的基础。1 / 1