1、24.1圆的有关性质(第圆的有关性质(第2课时)课时)九年级上册九年级上册 本课是在学生已经学习了圆的有关概念的基础上开始本课是在学生已经学习了圆的有关概念的基础上开始研究圆的性质,包括圆的轴对称性以及垂径定理,并研究圆的性质,包括圆的轴对称性以及垂径定理,并应用垂径定理及其推论解决问题应用垂径定理及其推论解决问题课件说课件说明明 学习目标:学习目标:1理解圆的轴对称性,会运用垂径定理解决有关的理解圆的轴对称性,会运用垂径定理解决有关的 证明、计算和作图问题证明、计算和作图问题;2感受类比、转化、数形结合、方程等数学思想和感受类比、转化、数形结合、方程等数学思想和 方法,在实验、观察、猜想、抽
2、象、概括、推理方法,在实验、观察、猜想、抽象、概括、推理 的过程中发展逻辑思维能力和识图能力的过程中发展逻辑思维能力和识图能力 学习重点:学习重点:垂径定理及其推论垂径定理及其推论课件说课件说明明如图,如图,1 400 多年前,我国隋代建造的赵州石拱桥多年前,我国隋代建造的赵州石拱桥主桥拱是圆弧形,它的跨度(弧所对的弦长)是主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m,拱高(弧的中点到弦的距离)为拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥,求赵州桥主桥拱的半径(精确到拱的半径(精确到 0.1 m)1创设情境,导入新知创设情境,导入新知请请拿出准备好的圆形拿出准备好的圆形纸
3、片,沿着它的直径翻折,重纸片,沿着它的直径翻折,重复做几次,你发现了什么?由此你能猜想复做几次,你发现了什么?由此你能猜想哪哪些线段相等?些线段相等?哪哪些弧相等?些弧相等?2探究新知探究新知3获得新知获得新知垂径定理:垂直于弦的直径平分弦,并且平分弦所垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧对的两条弧.DOCAEB知二推三知二推三4新知强化新知强化下列哪些图形可以用垂径定理?你能说明理由吗?下列哪些图形可以用垂径定理?你能说明理由吗?DOCAEBDOCAEB图图1图图2图图3图图4OAEBDOCAEB5利用新知问题回解利用新知问题回解ACDBO如图,已知在两同心圆如图,已知在两
4、同心圆 O 中,大圆弦中,大圆弦 AB 交小圆交小圆于于 C,D,则,则 AC 与与 BD 间可能存在什么关系?间可能存在什么关系?6利用新知解决问题利用新知解决问题DOCAB变式变式1 如图,若将如图,若将 AB 向下平移,当移到过圆心时,结论向下平移,当移到过圆心时,结论 AC=BD 还成立吗?还成立吗?6利用新知解决问题利用新知解决问题DOCAB变式变式2 如图,连接如图,连接 OA,OB,设,设 AO=BO,求证:求证:AC=BD6利用新知解决问题利用新知解决问题DOCAB变式变式3 连接连接 OC,OD,设,设 OC=OD,求证:求证:AC=BD6利用新知解决问题利用新知解决问题DOCAB内容:内容:垂径定理:垂直于弦的直径平分弦,并且平分弦所垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧对的两条弧构造直角三角形,垂径定理和勾股定理有机结合构造直角三角形,垂径定理和勾股定理有机结合是计算弦长、半径和弦心距等问题的方法是计算弦长、半径和弦心距等问题的方法技巧:重要辅助线是过圆心作弦的垂线技巧:重要辅助线是过圆心作弦的垂线重要思路:(由)垂径定理重要思路:(由)垂径定理构造直角三角形构造直角三角形 (结合)勾股定理(结合)勾股定理建立方程建立方程7归纳小结归纳小结教科书习题教科书习题 24.1第第 1,2 题题8布置作业布置作业