1、 反比例函数一、基础知识1. 定义:一般地,形如(为常数,)的函数称为反比例函数。还可以写成2. 反比例函数解析式的特征:等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.比例系数自变量的取值为一切非零实数。函数的取值是一切非零实数。3. 反比例函数的图像图像的画法:描点法 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数) 描点(有小到大的顺序) 连线(从左到右光滑的曲线)反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。反比例函数的图
2、像是是轴对称图形(对称轴是或)。反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为。4反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。7. 反比例函数的应用二、例题【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数
3、,()即()又在第二,四象限内,则可以求出的值【答案】由反比例函数的定义,得:解得时函数为【例2】在反比例函数的图像上有三点, 。若则下列各式正确的是( )A B C D 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。解法一:由题意得,所以选A解法二:用图像法,在直角坐标系中作出的图像描出三个点,满足观察图像直接得到选A解法三:用特殊值法【例3】如果一次函数相交于点(),那么该直线与双曲线的另一个交点为( )【解析】【例4】 如图,在中,点是直线与双曲线在第一象限的交点,且,则的值是_.图解:因为直线与双曲线过点,设点的坐标为. 则有.所以. 又点在第一象限,所以. 所以.而
4、已知. 所以.三、练习题1.反比例函数的图像位于( )A第一、二象限 B第一、三象限 C第二、三象限 D第二、四象限2.若与成反比例,与成正比例,则是的( )A、正比例函数 B、反比例函数 C、一次函数D、不能确定3.如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数图象大致为( )oyxyxoyxoyxoA B C D4.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示当气球内气压大于120 kPa时,气球将爆炸为了安全起见,气球的体积应( )A、不小于m3 B、小于m3 C、不小于m3 D、小于
5、m3 5如图 ,A、C是函数的图象上的任意两点,过A作轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记RtAOB的面积为S1,RtCOD的面积为S2则 ( )A S1 S2 B S1 S2 C S1=S2 D S1与S2的大小关系不能确定6关于x的一次函数y=-2x+m和反比例函数y=的图象都经过点A(-2,1). 求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B的坐标;(3)AOB的面积7. 如图所示,一次函数yaxb的图象与反比例函数y的图象交于A、B两点,与x轴交于点C已知点A的坐标为(2,1),点B的坐标为(,m)(1)求反比例函数和一次函数的解析式;(2)根据
6、图象写出使一次函数的值小于反比例函数的值的x的取值范围 8 某蓄水池的排水管每小时排水8m3,6小时可将满池水全部排空(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q的关系式(4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管的最大排水量为每小时12m3,那么最少需多长时间可将满池水全部排空?.9.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y关于x
7、的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?10如图,在直角坐标系xOy中,一次函数ykxb的图象与反比例函数的图象交于A(-2,1)、B(1,n)两点。(1)求上述反比例函数和一次函数的表达式;(2)求AOB的面积。四、课后作业1对与反比例函数,下列说法不正确的是( )A点()在它的图像上 B它的图像在第一、三象限C当时,D当时,2.已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( )A、(2,1) B、(2,-1) C、(2,4) D、(-1,-2)3在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系一定是( )A. +=0B. 0 D.=4. 反比例函数y的图象过点P(1.5,2),则k_5. 点P(2m3,1)在反比例函数y的图象上,则m_6. 已知反比例函数的图象经过点(m,2)和(2,3)则m的值为_7. 已知反比例函数的图象上两点,当时,有,则的取值范围是?8.已知y与x-1成反比例,并且x-2时y7,求:(1)求y和x之间的函数关系式; (2)当x=8时,求y的值;(3)y-2时,x的值。9. 已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点在双曲线上,求a是多少?