ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:158.50KB ,
文档编号:5517231      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5517231.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(一元二次方程经典测试题(含答案解析).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

一元二次方程经典测试题(含答案解析).doc

1、一元二次方程测试题考试范围: 一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第卷(选择题) 评卷人 得 分 一选择题(共12小题,每题3分,共36分)1方程x(x2)=3x的解为()Ax=5Bx1=0,x2=5Cx1=2,x2=0Dx1=0,x2=52下列方程是一元二次方程的是()Aax2+bx+c=0B3x22x=3(x22)Cx32x4=0D(x1)2+1=03关于x的一元二次方程x2+a21=0的一个根是0,则a的值为()A1B1C1或1D34某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率

2、为x,则下列方程中正确的是()A12(1+x)=17B17(1x)=12C12(1+x)2=17D12+12(1+x)+12(1+x)2=175如图,在ABC中,ABC=90,AB=8cm,BC=6cm动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使PBQ的面积为15cm2的是()A2秒钟B3秒钟C4秒钟D5秒钟6某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为() Ax(x+12)=210 Bx(x12)=210 C2x+2(x+12)=2

3、10 D2x+2(x12)=2107一元二次方程x2+bx2=0中,若b0,则这个方程根的情况是()A有两个正根 B有一正根一负根且正根的绝对值大C有两个负根 D有一正根一负根且负根的绝对值大8x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A1B或1CD或19一元二次方程ax2+bx+c=0中,若a0,b0,c0,则这个方程根的情况是()A有两个正根 B有两个负根C有一正根一负根且正根绝对值大 D有一正根一负根且负根绝对值大10有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac0,以下列四个结论中,错误的是()A

4、如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B如果方程M有两根符号相同,那么方程N的两根符号也相同C如果5是方程M的一个根,那么是方程N的一个根D如果方程M和方程N有一个相同的根,那么这个根必是x=111已知m,n是关于x的一元二次方程x22tx+t22t+4=0的两实数根,则(m+2)(n+2)的最小值是()A7B11C12D1612设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x11x2,那么实数a的取值范围是()ABCD第卷(非选择题) 评卷人 得 分 二填空题(共8小题,每题3分,共24分)13若x1,x2是关于x的方程x22x5=

5、0的两根,则代数式x123x1x26的值是 14已知x1,x2是关于x的方程x2+ax2b=0的两实数根,且x1+x2=2,x1x2=1,则ba的值是 15已知2x|m|2+3=9是关于x的一元二次方程,则m= 16已知x2+6x=1可以配成(x+p)2=q的形式,则q= 17已知关于x的一元二次方程(m1)x23x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x1,则所有符合条件的整数m的个数是 18关于x的方程(m2)x2+2x+1=0有实数根,则偶数m的最大值为 19如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块

6、绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米20如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x22x+kb+1=0的根的判别式 0(填:“”或“=”或“”) 评卷人 得 分 三解答题(共8小题)21(6分)解下列方程(1)x214x=8(配方法) (2)x27x18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法) 22(6分)关于x的一元二次方程(m1)x2x2=0(1)若x=1是方程的一个根,求m的值及另一个根(2)当m为何值时方程有两个不同的实数根23(6分)关于x的一元二次方程(a6)x28x+9=0有实根(1)求a的最大整数值;(

7、2)当a取最大整数值时,求出该方程的根;求2x2的值24(6分)关于x的方程x2(2k3)x+k2+1=0有两个不相等的实数根x1、x2(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值25(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律(1)求每月销售量y与销售单价x之间的函数关系式(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元26(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪

8、四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积27(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价

9、的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m0)元在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元28(10分)已知关于x的一元二次方程x2(m+6)x+3m+9=0的两个实数根分别为x1,x2(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)x1x2,判断动点P(m,n)所形成的函数图象是否

10、经过点A(1,16),并说明理由一元二次方程测试题参考答案与试题解析一选择题(共12小题)1方程x(x2)=3x的解为()Ax=5Bx1=0,x2=5Cx1=2,x2=0Dx1=0,x2=5【解答】解:x(x2)=3x,x(x2)3x=0,x(x23)=0,x=0,x23=0,x1=0,x2=5,故选B2下列方程是一元二次方程的是()Aax2+bx+c=0B3x22x=3(x22)Cx32x4=0D(x1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不

11、是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D3关于x的一元二次方程x2+a21=0的一个根是0,则a的值为()A1B1C1或1D3【解答】解:关于x的一元二次方程x2+a21=0的一个根是0,02+a21=0,解得,a=1,故选C4某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A12(1+x)=17B17(1x)=12C12(1+x)2=17D12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12

12、(1+x),2017的游客人数为:12(1+x)2那么可得方程:12(1+x)2=17故选:C5如图,在ABC中,ABC=90,AB=8cm,BC=6cm动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使PBQ的面积为15cm2的是()A2秒钟B3秒钟C4秒钟D5秒钟【解答】解:设动点P,Q运动t秒后,能使PBQ的面积为15cm2,则BP为(8t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,(8t)2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去)答:动点P,Q运

13、动3秒时,能使PBQ的面积为15cm26某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()Ax(x+12)=210Bx(x12)=210C2x+2(x+12)=210D2x+2(x12)=210【解答】解:设场地的长为x米,则宽为(x12)米,根据题意得:x(x12)=210,故选:B7一元二次方程x2+bx2=0中,若b0,则这个方程根的情况是()A有两个正根B有一正根一负根且正根的绝对值大C有两个负根D有一正根一负根且负根的绝对值大【解答】解:x2+bx2=0,=b241(2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx

14、2=0的两个根为c、d,则c+d=b,cd=2,由cd=2得出方程的两个根一正一负,由c+d=b和b0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B8x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A1B或1CD或1【解答】解:根据根与系数的关系,得x1+x2=1,x1x2=k又x12+x1x2+x22=2k2,则(x1+x2)2x1x2=2k2,即1k=2k2,解得k=1或当k=时,=120,方程没有实数根,应舍去取k=1故本题选A9一元二次方程ax2+bx+c=0中,若a0,b0,c0,则这个方程根的情况是()A有两个正根B有两个

15、负根C有一正根一负根且正根绝对值大D有一正根一负根且负根绝对值大【解答】解:a0,b0,c0,=b24ac0,0,0,一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大故选:C10有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac0,以下列四个结论中,错误的是()A如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B如果方程M有两根符号相同,那么方程N的两根符号也相同C如果5是方程M的一个根,那么是方程N的一个根D如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中=b24

16、ac,在方程cx2+bx+a=0中=b24ac,如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、“和符号相同,和符号也相同,如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、5是方程M的一个根,25a+5b+c=0,a+b+c=0,是方程N的一个根,正确;D、MN得:(ac)x2+ca=0,即(ac)x2=ac,ac1,x2=1,解得:x=1,错误故选D11已知m,n是关于x的一元二次方程x22tx+t22t+4=0的两实数根,则(m+2)(n+2)的最小值是()A7B11C12D16【解答】解:m,n是关于x的一元二次方程x22tx+t22t+4=0

17、的两实数根,m+n=2t,mn=t22t+4,(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7方程有两个实数根,=(2t)24(t22t+4)=8t160,t2,(t+1)2+7(2+1)2+7=16故选D12设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x11x2,那么实数a的取值范围是()ABCD【解答】解:方法1、方程有两个不相等的实数根,则a0且0,由(a+2)24a9a=35a2+4a+40,解得a,x1+x2=,x1x2=9,又x11x2,x110,x210,那么(x11)(x21)0,x1x2(x1+x2)+10,即

18、9+10,解得a0,最后a的取值范围为:a0故选D方法2、由题意知,a0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,抛物线与x轴的交点分别在1两侧,当a0时,x=1时,y0,a+(a+2)+9a0,a(不符合题意,舍去),当a0时,x=1时,y0,a+(a+2)+9a0,a,a0,故选D二填空题(共8小题)13若x1,x2是关于x的方程x22x5=0的两根,则代数式x123x1x26的值是3【解答】解:x1,x2是关于x的方程x22x5=0的两根,x122x1=5,x1+x2=2,x123x1x26=(x122x1)(x1+x2)6=526=3故答案为:314已知

19、x1,x2是关于x的方程x2+ax2b=0的两实数根,且x1+x2=2,x1x2=1,则ba的值是【解答】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x2=2b=1,解得a=2,b=,ba=()2=故答案为:15已知2x|m|2+3=9是关于x的一元二次方程,则m=4【解答】解:由题意可得|m|2=2,解得,m=4故答案为:416已知x2+6x=1可以配成(x+p)2=q的形式,则q=8【解答】解:x2+6x+9=8,(x+3)2=8所以q=8故答案为817已知关于x的一元二次方程(m1)x23x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x1

20、,则所有符合条件的整数m的个数是4【解答】解:关于x的一元二次方程(m1)x23x+1=0有两个不相等的实数根,m10且=(3)24(m1)0,解得m且m1,解不等式组得,而此不等式组的解集是x1,m1,1m且m1,符合条件的整数m为1、0、2、3故答案为418关于x的方程(m2)x2+2x+1=0有实数根,则偶数m的最大值为2【解答】解:由已知得:=b24ac=224(m2)0,即124m0,解得:m3,偶数m的最大值为2故答案为:219如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行

21、道的宽度为1米【解答】解:设人行道的宽度为x米(0x3),根据题意得:(183x)(62x)=60,整理得,(x1)(x8)=0解得:x1=1,x2=8(不合题意,舍去)即:人行通道的宽度是1米故答案是:120如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x22x+kb+1=0的根的判别式0(填:“”或“=”或“”)【解答】解:次函数y=kx+b的图象经过第一、三、四象限,k0,b0,=(2)24(kb+1)=4kb0故答案为三解答题(共8小题)21解下列方程(1)x214x=8(配方法)(2)x27x18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)

22、(4)2(x3)2=x29【解答】解:(1)x214x+49=57,(x7)2=57,x7=,所以x1=7+,x2=7;(2)=(7)241(18)=121,x=,所以x1=9,x2=2;(3)(2x+3)24(2x+3)=0,(2x+3)(2x+34)=0,2x+3=0或2x+34=0,所以x1=,x2=;(4)2(x3)2(x+3)(x3)=0,(x3)(2x6x3)=0,x3=0或2x6x3=0,所以x1=3,x2=922关于x的一元二次方程(m1)x2x2=0(1)若x=1是方程的一个根,求m的值及另一个根(2)当m为何值时方程有两个不同的实数根【解答】解:(1)将x=1代入原方程得m

23、1+12=0,解得:m=2当m=2时,原方程为x2x2=0,即(x+1)(x2)=0,x1=1,x2=2,方程的另一个根为2(2)方程(m1)x2x2=0有两个不同的实数根,解得:m且m1,当m且m1时,方程有两个不同的实数根23关于x的一元二次方程(a6)x28x+9=0有实根(1)求a的最大整数值;(2)当a取最大整数值时,求出该方程的根;求2x2的值【解答】解:(1)根据题意=644(a6)90且a60,解得a且a6,所以a的最大整数值为7;(2)当a=7时,原方程变形为x28x+9=0,=6449=28,x=,x1=4+,x2=4;x28x+9=0,x28x=9,所以原式=2x2=2x

24、216x+=2(x28x)+=2(9)+=24关于x的方程x2(2k3)x+k2+1=0有两个不相等的实数根x1、x2(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值【解答】解:(1)原方程有两个不相等的实数根,=(2k3)24(k2+1)=4k212k+94k24=12k+50,解得:k;(2)k,x1+x2=2k30,又x1x2=k2+10,x10,x20,|x1|+|x2|=x1x2=(x1+x2)=2k+3,x1x2+|x1|+|x2|=7,k2+12k+3=7,即k22k3=0,k1=1,k2=2,又k,k=125某茶叶专卖店经销一种日照绿茶,每千克成本80元

25、,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律(1)求每月销售量y与销售单价x之间的函数关系式(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元【解答】解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,解得,y与销售单价x之间的函数关系式为y=2x+280(2)根据题意得:w=(x80)(2x+280)=2x2+440x22400=1350;解得(x110)2=225,解得x1=95,x2=125答:销售单价为95元或125元26如图,为美化环境,某小区计划在一块长

26、方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积【解答】解:(1)设通道的宽度为x米由题意(602x)(402x)=1500,解得x=5或45(舍弃)

27、,答:通道的宽度为5米(2)设种植“四季青”的面积为y平方米由题意:y(30)=2000,解得y=100,答:种植“四季青”的面积为100平方米27某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m0)元在不考虑其

28、他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元【解答】22(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:答:甲、乙零售单价分别为2元和3元(2)根据题意得出:(1m)(500+100)+500=1000即2m2m=0,解得m=或m=0(舍去),答:当m定为元才能使商店每天销售甲、乙两种商品获取的利润共1000元28已知关于x的一元二次方程x2(m+6)x+3m+9=0的两个实数根分别为x1,x2(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由【解答】解(1)=(m+6)24(3m+9)=m20该一元二次方程总有两个实数根 (2)动点P(m,n)所形成的函数图象经过点A(1,16),n=4(x1+x2)x1x2=4(m+6)(3m+9)=m+15P(m,n)为P(m,m+15)A(1,16)在动点P(m,n)所形成的函数图象上

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|