1、体积和表面积三角形的面积=底高2。 公式 S= ah2正方形的面积=边长边长 公式 S= a2长方形的面积=长宽 公式 S= ab平行四边形的面积=底高 公式 S= ah梯形的面积=(上底+下底)高2 公式 S=(a+b)h2内角和:三角形的内角和=180度。长方体的表面积=(长宽+长高+宽高 ) 2 公式:S=(ab+ac+bc)2正方体的表面积=棱长棱长6 公式: S=6a2长方体的体积=长宽高 公式:V = abh长方体(或正方体)的体积=底面积高 公式:V = abh正方体的体积=棱长棱长棱长 公式:V = a3圆的周长=直径 公式:L=d=2r圆的面积=半径半径 公式:S=r2圆柱的
2、表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=dh=2rh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2r2圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积=1/3底面积高。公式:V=1/3Sh算术1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:a + b = b + a3、乘法交换律:a b = b a4、乘法结合律:a b c = a (b c)5、乘法分配律:a b + a c = a b + c6、除法的性质:a b c = a (b c)7、除法的性质:在除法里,被除数和除数同时扩
3、大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。8、有余数的除法: 被除数=商除数+余数方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。方程式:含有未知数的等式叫方程式。一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。代数: 代数就是用字母代替数。代数式:用字母表示的式子叫做代数式。如:3x
4、=ab+c分数分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互
5、为倒数。1的倒数是1,0没有倒数。分数除以整数(0除外),等于分数乘以这个整数的倒数。分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小分数的除法则:除以一个数(0除外),等于乘这个数的倒数。真分数:分子比分母小的分数叫做真分数。假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。带分数:把假分数写成整数和真分数的形式,叫做带分数。分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。小升初数学知识梳理一、关于数学命题趋势的分析纵观各级各类考试,数学命题有以下三个方面的趋势:(一)综合性主要考查学生的“双基”,以及知
6、识的综合运用能力。如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分“借”。分数运算中“约分”的思想是化繁为简的理论基础,要将它和关系“重新组合”、“拆项”等结合起来,加以训练。(二)延续性所谓“延续性”是指相关数学知识在以后的学习中是否会重新“遭遇”。从数学体系的角度来看,“函数
7、”的思想、“立体感”的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式(方程),圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。(三)变通性所谓“变通性”是指学生对相关数学知识的灵活运算的能力。常见的有“发现新规律,定义新运算的能力”、“优化设计(最大、最小)的能力”、“分析推理(执因索果)的能力”、以及“公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力”。二、关于数学应用问题的归类小学数学的应用题往往是概念、公式的应用。小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家
8、建设的另一种方式,只是债券的利率一般高于定期储蓄:“一成”就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2r或C=D;圆柱的侧面积=底面周长高;长方体的体积=长宽高=底面积高;长方形的面积=长宽;正方形的
9、面积=边长边长;平行四边形的面积=底高;三角形的面积=1/2底高;梯形的面积=1/2(上底+下底)高;圆的面积=RR;长方体、正方体和圆柱的体积公式可以统一写成:“底面积高”等等。(一)分数、百分数的应用题“分率(百分率、利率、折扣)”的概念是解题的关键,其中标准量“1”的选取是解题突破口。(二)工程问题工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率工作时间;工作效率=工作量/工作时间;工作时间=工作量/工作效率;总工作量=各分工作量之和。(三)行程问题从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑
10、的不仅仅是“路程=时间速度;时间=路程/速度;速度=路程/时间”,往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是“变化的条件”,如何在解题中准确运用“不变的公式”。(四)浓度问题(不作重点要求)这类题目要求了解的关系式:溶液=溶质+溶剂;浓度=溶质/溶液;溶液=溶质/浓度;溶质=溶液浓度三、简单的几何问题面积、体积问题主要考虑以下内容:平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。
11、求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。求长方体和圆柱的体积有什么相同的地方?提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。圆柱(锥)是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情
12、况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。四、简单的统计简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。要认识统计图,并明确统计图的特点和作用,经历“收集、整理数据和用统计图表示数据、整理结果”过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税?什么是成活率?它的计算公式是什么?
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。