1、人教版初中数学数据分析经典测试题及解析一、选择题1在去年的体育中考中,某校6名学生的体育成绩统计如下表:成绩171820人数231则下列关于这组数据的说法错误的是()A众数是18B中位数是18C平均数是18D方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)218,则中位数是18故本选项说法正确;C、这组数据的平均数是:(172+183+20)618故本选项说法正确;D、这组数据的方差是:2(171
2、8)2+3(1818)2+(2018)21故本选项说法错误故选D【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)22甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:品种甲乙丙平均产量/(千克/棵)9090方差10.224.88.5若从这三个品种中选择一个在该地区
3、推广,则应选择的品种是()A甲B乙C丙D甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键3已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A7,6B7,4C5,4D以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=53,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差【详解】解:数据a,b,c的平均数为
4、5,a+b+c=53=15,(a-2+b-2+c-2)=3,数据a-2,b-2,c-2的平均数是3;数据a,b,c的方差为4,(a-5)2+(b-5)2+(c-5)2=4,a-2,b-2,c-2的方差=(a-2-3)2+(b-2-3)2+(c-2-3)2= (a-5)2+(b-5)2+(c-5)2=4,故选B【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.4某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A8B9C10D12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数
5、(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去当众数为10,根据题意得(10+10+x+8)4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)2=10故选C【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论5对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A
6、中位数是1B众数是1C平均数是1.5D方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为2,C选项错误;方差为(12)23+(32)2+(42)21.6,D选项正确;故选:C【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式6下列说法:一组对边平行,另一组对边相等的四边形是平行四边形;经过有交通信号灯的路口,遇到红灯是必然事件;若甲组数据的方差是,乙组数据的方差是,
7、则甲数据比乙组数据稳定;圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是( )A个B个C个D个【答案】A【解析】【分析】根据平行四边形的判定去判断;根据必然事件的定义去判断;根据方差的意义去判断;根据圆内接正多边形的相关角度去计算【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,错误;必然事件是一定会发生的事件,遇到红灯是随机事件,错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,错误;正六边形的边所对的圆心角是 ,所以构成等边三角形,结论正确所以正确1个,答案选A【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差
8、的意义;会计算圆内接正多边形相关7某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82下列关于这组数据的描述不正确的是()A众数是108B中位数是105C平均数是101D方差是93【答案】D【解析】【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,众数是108,中位数为,平均数为,方差为;故选:D【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.8在一次中学
9、生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米1.501.601.651.701.751.80人数232341则这15运动员的成绩的众数和中位数分别为()A1.75,1.70B1.75,1.65C1.80,1.70D1.80,1.65【答案】A【解析】【分析】9一组数据3、2、1、2、2的众数,中位数,方差分别是:( )A2,1,2B3,2,0.2C2,1,0.4D2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为: 平均数为: 2出现的次数最多,众数为:2中位数为:2方差为: 故选:D【点睛】本题考查了确定数
10、据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.10下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A甲队员成绩的平均数比乙队员的大B乙队员成绩的平均数比甲队员的大C甲队员成绩的中位数比乙队员的大D甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数=8,甲10次射击成绩的平均数=(6+37+28+39+10)10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,
11、8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+27+48+29+10)9=8(环),甲队员成绩的方差=(6-8)2+3(7-8)2+2(8-8)3+3(9-8)2+(10-8)2=1.4;乙队员成绩的方差=(6-8)2+2(7-8)2+4(8-8)3+2(9-8)2+(10-8)2=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.11某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是
12、()码(cm)23.52424.52525.5销售量(双)12252A25,25B24.5,25C25,24.5D24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A12如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A中位数31,众数是22B中位数是22,众数是31C中位数是26,众数是22D中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断【详解】七个整点时数据为:22,22,23
13、,26,28,30,31所以中位数为26,众数为22故选:C【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据13某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为( )A5,5B6,6C5,6D6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5故选D【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列
14、后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数14某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A15.5,15.5B15.5,15C15,15.5D15,15【答案】D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D155、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意(2.32.4)2+(2.42.4)2+(2.52.4)2+(2.
15、42.4)2+(2.42.4)2(0.01+0+0.01+0+0)0.020.004这组数据的方差是0.004,选项D不符合题意故选B【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握16在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A1.70,1.75B1.70,1.70C1.65,1.75D1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个详解:共15名学生,中位数落在第8
16、名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A点睛:本题为统计题,考查众数与中位数的意义众数是一组数据中出现次数最多的数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数17某中学篮球队12名队员的年龄如表:年龄(岁)13141516人数1542关于这12名队员年龄的数据,下列说法正确的是()A中位数是14.5B年龄小于15岁的频率是C众数是5D平均数是14.8【答案】A【解析】【分析】根据表中数据,求出这组数据的众数、频率、中位数和平均数即可【详解
17、】解:A、中位数为第6、7个数的平均数,为14.5,此选项正确;B、年龄小于15岁的频率是,此选项错误;C、14岁出现次数最多,即众数为14,此选项错误;D、平均数为:,此选项错误;【点睛】本题考查了众数、中位数、平均数与频率的计算问题,是基础题解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.18一组数据-2,3,0,2,3的中位数和众数分别是()A0,3B2,2C3,3D2,3【答案】D【解析】【分析】根据中位数和众数的定义解答即可【详解】将这组数据从小到大的顺序排列为:2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3故选D【点睛】本题
18、考查了众数与中位数的意义将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错19据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A25和30B25和29C28和30D28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,这组数据的中位数是28,在这组数据中,29出
19、现的次数最多,这组数据的众数是29,故选D【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20某班有40人,一次体能测试后,老师对测试成绩进行了统计由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A平均分不变,方差变大B平均分不变,方差变小C平均分和方差都不变D平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可【详解】解:小亮的成绩和其他39人的平均数相同,都是90分,该班40人的测试成绩的平均分为90分,方差变小,故选:B【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。