1、2第二章第二章2 线性方程组的迭代解法线性方程组的迭代解法一、雅可比一、雅可比(Jacobi)迭代法迭代法二、二、高斯高斯-赛德尔迭代法赛德尔迭代法三、三、超松弛迭代法超松弛迭代法3一、雅可比一、雅可比(Jacobi)迭代法迭代法,(),0,1,2,ijn niiAXbAaain 设设则则11221331111221 123322221 122,111,1,(2.2.2)1nnnnnnnn nnnnnxa xa xa xbaxa xa xa xbaxa xa xaxba4(1)(0)(0)(0)11221331111(1)(0)(0)(0)221 12332222(1)(0)(0)(0)1 1
2、22,111,1,1nnnnnnnn nnnnnxa xa xa xbaxa xa xa xbaxa xa xaxba(0)(0)(0)12,Tnxxx任取初始向量代入右端,得5(2)(1)(1)(1)11221331111(2)(1)(1)(1)221 12332222(2)(1)(1)(1)1 122,111,1,1nnnnnnnn nnnnnxa xa xa xbaxa xa xa xbaxa xa xaxba(1)(1)(1)12,Tnxxx将代入右端,得6(1)()()()11221331111(1)()()()221 12332222(1)()()()1 122,111,1,(2.
3、2.4)1kkkknnkkkknnkkkknnnn nnnnnxa xa xa xbaxa xa xa xbaxa xa xaxba(0,1,2,)k,如此继续迭代下去,有71122 :,nnaaADLUDa记记12131212323132312,100000,000nnnnnn naaaaaaaaLUaaaa 811 -()(2.2.2)XDLU XD b则则11 -(),BDLUdD b令令 (2.2.3)XBXd则则10 XBXd()()代代入入右右端端,得得 ,0(0)(0)(0)12=,TnXxxx()任任取取初初始始向向量量 121 XXBXd()()()将将代代入入右右端端,得得
4、 ,1.kkXBXd()(),如如此此下下去去,有有 (0,1,2,)k9 ()*:kXX得得向向量量序序列列,若若它它收收敛敛于于()*lim=kkXX()*lim,1,2,kiikxxin *.XBXdAXb得得1,kkXBXd()()由由 1lim lim(),kkkkXBXd()()1-().BDLU 称称 为为(Jacobi)(Jacobi)迭迭代代矩矩阵阵10二、二、高斯高斯-赛德尔赛德尔(Gauss-Seidel)迭代法迭代法,(),0,1,2,ijn niiAXbAaain 设设(1)(0)(0)(0)11221331111(1)(1)(0)(0)221 12332222(1)
5、(1)(1)(1)1 122,111,1,1nnnnnnnn nnnnnxa xa xa xbaxa xa xa xbaxa xa xaxba(0)(0)(0)12,Tnxxx任取初始向量首次迭代为11(1)()()()11221331111(1)(+1)()()221 12332222(1)(+1)(+1)(+1)1 122,111,1,(2.2.6)1kkkknnkkkknnkkkknnnn nnnnnxa xa xa xbaxa xa xa xbaxa xa xaxba(0,1,2,)k反复迭代,有121122 :,nnaaADLUDa记记12131212323132312,100000
6、,000nnnnnn naaaaaaaaLUaaaa 131111-(),kkkXDLXUXD b()()()11:-,kkkDDXLXUXb()()()左左乘乘1:+),kkD L XUXb ()()移移项项(111 -(),(),GDLU dDLb令令(1)()1 (2.2.7)kkXGXd 则则 0,1,2,iiainDL可可逆逆,111(+)(+),kkXD LUXD Lb ()()141-().GDLU 称称为为(Gauss-Seidel)(Gauss-Seidel)迭迭代代矩矩阵阵1(1)(+1)()111inkkkiijjijjijj iiixa xa xba 1()(+1)()
7、11,inkkkiijjijjijj iiixa xa xba1,2,;0,1,2,.in k将将迭迭代代格格式式改改写写为为15三、三、超松弛超松弛(SOR)迭代法迭代法-Gauss Seidel迭代公式1(+1)()(+1)()12.2.11inkkkkiiijjijjijj iiixxa xa xba()1,2,;0,1,2,.in k 01,()SUR 当当时时 称称为为低低松松弛弛迭迭代代法法;1,()SOR 当当时时 称称为为超超松松弛弛迭迭代代法法;1,当当时时 为为Gauss-SeidelGauss-Seidel迭迭代代法法.16(1)()1 max|-|(),kkiii nxx 用用为为精精度度要要求求(1)()kkXX 即即控控制制迭迭代代终终止止。1 ()(1),GDLDU 其其中中(1)(1)(),kkkXXG Xd解解出出得得(2.1.11)将改写为矩阵形式111+(),kkkkXXDLXDU Xb()()()()1().dDLb 17