1、2020年最新2020年2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P(a,b)的坐标特征:第一象限:a0,b0; 第二象限:a0,b0;第三象限:a0,b0; 第四象限:a0,b0(2)坐标轴上点P(a,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:一、三象限:; 二、四象限:同步练习1定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根
2、据上述定义,“距离坐标”是(1,2)的点的个数是()A2 B3 C4 D5考点:点到直线的距离;坐标确定位置;平行线之间的距离解答:如图, 到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个故选C2如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A黑(3,3),白(3,1) B黑(3,1)
3、,白(3,3) C黑(1,5),白(5,5) D黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案解答: A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:B3(2014台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录根据图中两人的对话纪录,若下列有一
4、种走法能从邮局出发走到小杰家,则此走法为何?()A向北直走700公尺,再向西直走100公尺 B向北直走100公尺,再向东直走700公尺C向北直走300公尺,再向西直走400公尺 D向北直走400公尺,再向东直走300公尺考点:坐标确定位置解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺故选:A4如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A(2,1) B(0,1) C(
5、-2,-1) D(-2,1)考点:坐标确定位置解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1)故选C5(2014怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A向东走5千米 B向西走5千米 C向东走8千米 D向西走8千米考点:坐标确定位置解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米故选A6(2014遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是,则“宝藏”点的坐标是 考点:
6、勾股定理的应用;坐标确定位置;线段垂直平分线的性质解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2)故答案是:(5,2)和(1,-2)7(2014曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是 考点:坐标确定位置解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5)故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5)8(2014赤峰)如图所示,在象棋盘上建
7、立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标 考点:坐标确定位置解答:建立平面直角坐标系如图,兵的坐标为(-2,3)故答案为:(-2,3)9如图1,是由方向线一组同心、等距圆组成的点的位置记录图包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、n将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为 如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方
8、向旋转交点依次标记为A10、A11、A16;到A16后进入圆3,之后重复以上操作过程则点A25的位置为 ,点A2013的位置为 ,点A16n+2(n为正整数)的位置为 考点:规律型:点的坐标;坐标确定位置解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,258=31,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),20138=2515,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),(16n+2)8=2n2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东
9、北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北)10有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置解:C点的位置如图11如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1)(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C
10、(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12常用的确定物体位置的方法有两种如图,在44个边长为1的正方形组成的方格中,标有A,B两点请你用两种不同方法表述点B相对点A的位置解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45等均可),距离A点处知识点2 平面直角坐标系知识链接点的坐标(1)我们把有顺序的两个数a和b组成的数
11、对,叫做有序数对,记作(a,b)(2)平面直角坐标系的相关概念建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点它既属于x轴,又属于y轴(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限坐标轴上的点不属于任何一个象限(4)坐标平面内的点与有序实数对是一一对应的关系2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2
12、)2说明:求直角坐标系内任意两点间的距离可直接套用此公式同步练习1(2014台湾)如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7)根据图中P、Q两点的位置,判断点(6-b,a-10)落在第几象限?()A一 B二 C三 D四考点:点的坐标解答:(5,a)、(b,7),a7,b5,6-b0,a-100,点(6-b,a-10)在第四象限故选D2(2014萧山区模拟)已知点P(1-2m,m-1),则不论m取什么值,该P点必不在()A第一象限 B第二象限 C第三象限 D第四象限考点:点的坐标分析:分横坐标是正数和负数两种情况求出m的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征
13、解答解答:1-2m0时,m,m-10,所以,点P在第四象限,一定不在第一象限;1-2m0时,m,m-1既可以是正数,也可以是负数,点P可以在第二、三象限,综上所述,P点必不在第一象限故选A3(2014闵行区二模)如果点P(a,b)在第四象限,那么点Q(-a,b-4)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限考点:点的坐标分析:根据第四象限的点的坐标特征确定出a、b的正负情况,再确定出点Q的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可解答:点P(a,b)在第四象限,a0,b0,-a0,b-40,点Q(-a,b-4)在第三象限故选C点评:本题考查了各象限内点的
14、坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4(2014北海)在平面直角坐标系中,点M(-2,1)在()A第一象限 B第二象限 C第三象限 D第四象限解答:选B5(2014赤峰样卷)如果m是任意实数,则点P(m,1-2m)一定不在()A第一象限 B第二象限 C第三象限 D第四象限解答:选C6(2014呼和浩特)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A(1,2) B(2,9) C(5,3) D(-9,-
15、4)解答:选A7(2014杨浦区三模)如果将点(-b,-a)称为点(a,b)的“反称点”,那么点(a,b)也是点(-b,-a)的“反称点”,此时,称点(a,b)和点(-b,-a)是互为“反称点”容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0)请再写出一个这样的点: 解答:点(3,5)和点(-5,-3)(不唯一)8(2014南京联合体二模)点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为 (填一个即可)解答:点(-5,5)(不唯一)9(2014玉林)在平面直角坐标系中,点(-4,4)在第 象限解答:二10(2014长沙一模)在平面直角坐标系中,若点
16、P(m+3,m-1)在第四象限,则m的取值范围为 解答:11若x,y为实数,且满足|x-3|+ =0,(1)如果实数x,y对应为直角坐标的点A(x,y),求点A在第几象限;(2)求的值?解答:(1) 四 (2) -112若点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第_象限解答:三13在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是_个(3)当
17、P点从点O出发_秒时,可得到整数点(10,5)考点:点的坐标分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒(0,2),(2,0),(1,1)33秒(0,3),(3,0),(2,1),(1,2)4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个
18、整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题同步练习1如图,在平面直角坐标系中,
19、点A,B的坐标分别为(-6,0)、(0,8)以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为 考点:勾股定理;坐标与图形性质分析:首先利用勾股定理求出AB的长,进而得到AC的长,因为OC=AC-AO,所以OC求出,继而求出点C的坐标解答:点A,B的坐标分别为(-6,0)、(0,8),AO=6,BO=8,AB=10,以点A为圆心,以AB长为半径画弧,AB=AC=10,OC=AC-AO=4,交x正半轴于点C,点C的坐标为(4,0),故答案为:(4,0)2如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为 解答:C(3,5)3如图,RtOAB的
20、斜边AO在x轴的正半轴上,直角顶点B在第四象限内,SOAB=20,OB:AB=1:2,求A、B两点的坐标解答:A(10,0),B(2,-4)4如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为()Aa=b B2a+b=-1 C2a-b=1 D2a+b=1考点:作图基本作图;坐标与图形性质;角平分线的性质分析:根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在
21、象限可得横纵坐标的和为0,进而得到a与b的数量关系解答:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B5如图,在平面直角坐标系中,有一矩形COAB,其中三个顶点的坐标分别为C(0,3),O(0,0)和A(4,0),点B在O上(1)求点B的坐标;(2)求O的面积解答:(1) B(4,3) (2) 256(2014南平模拟)如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P在AB边上,且CPB=60,将CPB沿CP折叠,使得点B落在D处,则D的坐标为()A(2,) B( , ) C(2,) D(,)考点:
22、翻折变换(折叠问题);坐标与图形性质分析:作DEy轴于E,DFx轴于F,根据正方形的性质OC=BC=4,B=90,由BPC=60得1=30,再根据折叠的性质得到1=2=30,CD=CB=4,所以3=30,在RtCDE中,根据含30度的直角三角形三边的关系得到DE=CD=2,CE=DE=,则OE=,所DF=,然后可写出D点坐标解答:作DEy轴于E,DFx轴于F,如图,四边形OABC是正方形,点A的坐标是(4,0),OC=BC=4,B=90,BPC=60,1=30,CPB沿CP折叠,使得点B落在D处,1=2=30,CD=CB=4,3=30,在RtCDE中,DE=CD=2,CE=DE=2,OE=OC
23、-CE=,DF=OE=,D点坐标为(2,)故选C7如图,在平面直角坐标系中,RtOAB的顶点A在x轴的正半轴上顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为 考点:轴对称-最短路线问题;坐标与图形性质分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DNOA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案解答:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DNOA于N,则此时PA+PC的值最小,DP=PA,PA+PC=PD+PC=CD,B(3,),AB=,OA=
24、3,B=60,由勾股定理得:OB=,由三角形面积公式得:OAAB=OBAM,AM=,AD=2=3,AMB=90,B=60,BAM=30,BAO=90,OAM=60,DNOA,NDA=30,AN=AD=,由勾股定理得:DN=,C(,0),CN=3-=1,在RtDNC中,由勾股定理得:DC=,即PA+PC的最小值是,8在直角坐标系中,有四个点A(-8,3)、B(-4,5)、C(0,n)、D(m,0),当四边形ABCD的周长最短时,的值为()A B C D考点:轴对称-最短路线问题;坐标与图形性质分析:若四边形的周长最短,由于AB的值固定,则只要其余三边最短即可,根据对称性作出A关于x轴的对称点A、
25、B关于y轴的对称点B,求出AB的解析式,利用解析式即可求出C、D坐标,得到解答:根据题意,作出如图所示的图象:过点B作B关于y轴的对称点B、过点A关于x轴的对称点A,连接AB,直线AB与坐标轴交点即为所求设过A与B两点的直线的函数解析式为y=kx+bA(-8,3),B(-4,5),A(-8,-3),B(4,5),依题意得:38k+b,54k+b,联立解得k,b,所以,C(0,n)为(0,)D(m,0)为(,0)所以,=故答案为故选B9已知点A(0,0),B(0,4),C(3,t+4),D(3,t)记N(t)为ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)
26、所有可能的值为()A6、7 B7、8 C6、7、8 D6、8、9考点:平行四边形的性质;坐标与图形性质分析:分别求出t=1,t=1.5,t=2,t=0时的整数点,根据答案即可求出答案解答:当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A(0,0),B(0,4),C(3,5.5),D
27、(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选C*10如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,-3),ABO是ABO关于点A的位似图形,且O的坐标为(-1,0),则点B的坐标为 解答:直线AB方程为y=3x-9,直线OB斜率为过O点平行于直线OB的直线方程
28、为:y=(x+1) 联立两方程,解得交点B的坐标为(,4)11已知点D与点A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则CD长的最小值为 7 考点:平行四边形的性质;坐标与图形性质分析:CD是平行四边形的一条边,那么有AB=CD;CD是平行四边形的一条对角线,过C作CMAO于M,过D作DFAO于F,交AC于Q,过B作BNDF于N,证DBNCAM,推出DN=CM=a,BN=AM=8-a,得出D(8-a,6+a),由勾股定理得:CD2=(8-a-a)2+(6+a+a)2=8a2-8a+100=8(a-)2+98,求出即可解答:有两种情况:CD是平行四边形的一条边,那么有AB
29、=CD=10CD是平行四边形的一条对角线,过C作CMAO于M,过D作DFAO于F,交AC于Q,过B作BNDF于N,则BND=DFACMA=QFA=90,CAM+FQA=90,BDN+DBN=90,四边形ACBD是平行四边形,BD=AC,C=D,BDAC,BDF=FQA,DBN=CAM,在DBN和CAM中, BNDAMC, DBNCAM, BDACDBNCAM(AAS),DN=CM=a,BN=AM=8-a, D(8-a,6+a),由勾股定理得:CD2=(8-a-a)2+(6+a+a)2=8a2-8a+100=8(a-)2+98,当a=时,CD有最小值,是10,CD的最小值是=解法二: CD是平行
30、四边形的一条对角线设CD、AB交于点E,点E为AB的中点,E(,),即E(4,3)CE=DE,当DE取得最小值时,CE自然为最小,C(a,-a),C点可以看成在直线y=-x上的一点,CE最小值为点E到直线的距离,即CE直线y=-x,根据两直线垂直,斜率乘积为-1,CE所在直线为y=x+b,代入E(4,3),可得y=x-1,C点坐标为两直线交点:yx, yx1,即:(,)CE为:=CD=故答案为:点评:本题考查了平行四边形性质,全等三角形的性质和判定,二次函数的最值的应用,关键是能得出关于a的二次函数解析式,题目比较好,难度偏大*12如图,ABO缩小后变为ABO,其中A、B的对应点分别为A、B点
31、A、B、A、B均在图中在格点上若线段AB上有一点P(m,n),则点P在AB上的对应点P的坐标为()A( ,n) B(m,n) C(m,) D(,)考点:位似变换;坐标与图形性质分析:根据A,B两点坐标以及对应点A,B点的坐标得出坐标变化规律,进而得出P的坐标解答:ABO缩小后变为ABO,其中A、B的对应点分别为A、B点A、B、A、B均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A点坐标为:(2,3),B点坐标为:(3,1),线段AB上有一点P(m,n),则点P在AB上的对应点P的坐标为:(,)故选D*13(2014海港区一模)如图,在直角坐标系中,有1616的正方形网格,
32、ABC的顶点分别在网格的格点上以原点O为位似中心,放大ABC使放大后的ABC的顶点还在格点上,最大的ABC的面积是()A8 B16 C32 D64考点:位似变换;坐标与图形性质分析:根据题意结合位似图形的性质与三角形最长边即为,进而得出答案解答:如图所示:ABC即为符合题意的图形,最大的ABC的面积是:816=64故选:D 知识点4 坐标与图形的变化知识链接1 坐标与图形变化-对称(1)关于x轴对称 横坐标相等,纵坐标互为相反数即点P(x,y)关于x轴的对称点P的坐标是(x,-y)(2)关于y轴对称 纵坐标相等,横坐标互为相反数即点P(x,y)关于y轴的对称点P的坐标是(-x,y)(3)关于直
33、线对称 关于直线x=m对称,P(a,b)P(2m-a,b) 关于直线y=n对称,P(a,b)P(a,2n-b)2 坐标与图形变化-平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)P(x+a,y)向左平移a个单位,坐标P(x,y)P(x-a,y)向上平移b个单位,坐标P(x,y)P(x,y+b)向下平移b个单位,坐标P(x,y)P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度(即:
34、横坐标,右移加,左移减;纵坐标,上移加,下移减)3 坐标与图形变化-旋转(1)关于原点对称的点的坐标即点P(x,y)关于原点O的对称点是P(-x,-y)(2)旋转图形的坐标 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180同步练习1(2014大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A(1,3) B(2,2) C(2,4) D(3,3)考点:坐标与图形变化-平移分析:根据向上平移,横坐标不变,纵坐标加解答解答:点(2,3)向上平移1个单位,所得到的点的坐标是(2,4)故选:C2(2
35、014呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A第一象限 B第二象限 C第三象限 D第四象限考点:坐标与图形变化-平移分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限故选D3(2014牡丹江)如图,把ABC经过一定的变换得到ABC,如果ABC上点P的坐标为(x,y),那么这个点在ABC中的对应点P的坐标为()A(-x,y-2) B(-x,y+2) C(-x+2,-y
36、) D(-x+2,y+2)考点: 坐标与图形变化-平移分析:先观察ABC和ABC得到把ABC向上平移2个单位,再关于y轴对称可得到ABC,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P点的坐标解答:把ABC向上平移2个单位,再关于y轴对称可得到ABC,点P(x,y)的对应点P的坐标为(-x,y+2)故选:B4(2014潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1)规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A(-2012
37、,2) B(-2012,-2) C(-2013,-2) D(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移专题:规律型分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标解答:正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1)对角线交点M的坐标为(2,2),根据题
38、意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2)故选:A点评:此题考查了对称与平移的性质此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键5(2014
39、昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段OA,则点A的对应点A的坐标为 考点:坐标与图形变化-平移分析:根据点向左平移a个单位,坐标P(x,y)P(x-a,y)进行计算即可解答:点A坐标为(1,3), 线段OA向左平移2个单位长度,点A的对应点A的坐标为(1-2,3),即(-1,3),故答案为:(-1,3)6(2014宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是 考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴
40、对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2)7(2014厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是 ,A1的坐标是 考点:坐标与图形变化-平移分析:根据向右平移,横坐标加,纵坐标不变解答解答:点O(0,0),A(1,3),线段OA向右平移3个单位,点O1的坐标是(3,0),A1的坐标是(4,3)故答案为:(3,0),(4,3)*8(2014巴中)如图,
41、直线y=x+4与x轴、y轴分别交于A、B两点,把A0B绕点A顺时针旋转90后得到AOB,则点B的坐标是 考点:坐标与图形变化-旋转分析:首先根据直线AB来求出点A和点B的坐标,B的横坐标等于OA+OB,而纵坐标等于OA,进而得出B的坐标解答:直线y=-x+4与x轴,y轴分别交于A(3,0),B(0,4)两点,旋转前后三角形全等,OAO=90,BOA=90OA=OA,OB=OB,OBx轴,点B的纵坐标为OA长,即为3,横坐标为OA+OB=OA+OB=3+4=7,故点B的坐标是(7,3),故答案为:(7,3)点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B和点B位置的特殊性,以及点B的坐标
42、与OA和OB的关系9(2013梅州)如图,在平面直角坐标系中,A(-2,2),B(-3,-2)(1)若点C与点A关于原点O对称,则点C的坐标为_;(2)将点A向右平移5个单位得到点D,则点D的坐标为_;(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A的横坐标加5,纵坐标不变即可得到对应点D的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可解答:(1)点C与点A(-2,2)关于原点O对称,点C的坐标为(2,-2);(2)将点A向右平移5个单位得到点D,点D的坐标为(3,2);(3)由图可知:A(-2,2),B(-3,-2),C(2,-2),D(3,2),在平行四边形ABCD内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。