1、实数全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点一、平方根和立方根 类型项目平方根立方根被开方数非负数任意实数符号表示性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根
2、;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论要点二、次方根如果一个数的次方(是大于1的整数)等于,那么这个数叫做的次方根.当为奇数时,这个数为的奇次方根;当为偶数时,这个数为的偶次方根. 求一个数的次方根的运算叫做开次方,叫做被开方数,叫做根指数.实数的奇次方根有且只有一个,正数的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的次方根等于零.要点三、实数有理数和无理数统称为实数.1.实数的分类要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数 (2)无理数分成三类
3、:开方开不尽的数,如,等;有特殊意义的数,如; 有特定结构的数,如0.1010010001 (3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数我们已经学习过的非负数有如下三种形式: (1)任何一个实数的绝对值是非负数,即|0;(2)任何一个实数的平方是非负数,即0;(3)任何非负数的算术平方根是非负数,即 ().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个
4、非负数之和等于0,则每个非负数都等于0.4.实数的运算:数的相反数是;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方
5、法.要点四、近似数及有效数字1.近似数:完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数.2.精确度:近似数与准确数的接近程度即近似程度.对近似程度的要求叫做精确度. 要点诠释:精确度有两种形式:精确到哪一位保留几个有效数字3.有效数字:从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字,如0.208的有效数字有三个:2,0,8要点五、分数指数幂,其中为正整数,.上面规定中的和叫做分数指数幂,是底数.整数指数幂和分数指数幂统称为有理数指数幂.要点诠释:设为有理数,那么(1).(2).(3).【典型例题】类型一、有关方根的问题
6、1、(2015春仙桃校级期末)一个正数的x的平方根是2a3与5a,求a和x的值【思路点拨】根据平方根的定义得出2a3+5a=0,进而求出a的值,即可得出x的值【答案与解析】解:一个正数的x的平方根是2a3与5a,2a3+5a=0,解得:a=2,2a3=7,x=(7)2=49【总结升华】此题主要考查了平方根的定义,正确把握定义是解题关键举一反三:【变式1】已知,求的平方根. 【答案】解:由题意得: 解得23,的平方根为3.【变式2】若和互为相反数,试求的值【答案】解:和互为相反数, 37340 3()3,1.2、已知M是满足不等式的所有整数的和,N是满足不等式的最大整数求MN的平方根【答案与解析
7、】解:的所有整数有1,0,1,2 所有整数的和M11022 2,N是满足不等式的最大整数 N2 MN4,MN的平方根是2.【总结升华】先由已知条件确定M、N的值,再根据平方根的定义求出MN的平方根类型二、与实数有关的问题3、已知是的整数部分,是它的小数部分,求的值【思路点拨】一个数是由整数部分小数部分构成的.通过估算的整数部分是3,那么它的小数部分就是,再代入式子求值.【答案与解析】解:是的整数部分,是它的小数部分,. 【总结升华】可用夹挤法来确定,即看介于哪两个相邻的完全平方数之间,然后开平方.这个数减去它的整数部分后就是它的小数部分.举一反三:【变式】 (2015杭州)若kk+1(k是整数
8、),则k=()A6B7C8D9【答案】D解:kk+1(k是整数),910,k=94、阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若0,则;若0,则;若0,则.例如:在比较与的大小时,小东同学的作法是: 请你参考小东同学的作法,比较与的大小. 【思路点拨】仿照例题,做差后经过计算判断差与0的关系,从而比较大小.【答案与解析】解:【总结升华】实数比较大小常用的有作差法和作商法,根据具体情况加以选择. 举一反三:【变式】实数在数轴上的位置如图所示,则的大小关
9、系是: ;【答案】;5、用四舍五入法,按括号中的要求把下列各数取近似数.(1)万(精确到千位);(2)12 341 000(精确到万位);(3)0.030 56(保留3个有效数字)【答案与解析】解:(1)万=或表示为万;(2)12 341 000=;(3) 0.030 560.030 6【总结升华】一般的近似数,四舍五入到哪一位就说它精确到哪一位,若是汉字单位“万、千、百”类近似数,精确度是由其最后一位数所在的数位确定的,但必须先把该数写成单位为“个”位的数再确定其精确度;用形如的数,其精确度看中最后一位数在原数中的数位.6、 计算:(1) ;(2) ;(3);(4)【答案与解析】解:(1)
10、;(2) ;(3);(4).【总结升华】利用有理数指数幂的运算性质解题.类型三、实数综合应用7、已知、满足,解关于的方程【答案与解析】解:280, 0,解得4, ,代入方程:【总结升华】先由非负数和为0,则几个非负数分别为0解出、的值,再解方程.举一反三:【变式】设、都是实数,且满足,求代数式的值【答案】解: ,解得.8、阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:,设().解得 .问题:(1)请你依照小明的方法,估算的近似值;(2)请结合上述具体实例,概括出估算的公式:已知非负整数、,若,且,则_(用含、的代数式表示);(3)请用(2)中的结论估算的近似值. 【答案与解析】解:(1),设().解得 .(2),设().对比,(3),6.083.【总结升华】此题比较新颖,关键是通过阅读材料快速掌握估值的方法.(2)问中要对比式子,找准和,表示出.
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。