1、 活动活动1 知识复习知识复习 多项式与多项式相乘的法则:多项式与多项式多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加每一项,再把所得的积相加.(1)(x+1)(x1);(2)(a+2)(a2);(3)(3x)(3+x);(4)(2x+1)(2x1).(a+b)(m+n)=am+an+bm+bn.活动活动2 计算下列各题,你能发现什么规律?计算下列各题,你能发现什么规律?平方差公式平方差公式:(a+b)()(a b)=)=a2 b2.即即两数两数和和与与这两数这两数差差的的积积等于这两个数
2、的平方差等于这两个数的平方差.(m+n)(m n)=m2 n2.(a+b)(a b)=a2 b2.a2 ab+ab b2=请从这个正方形纸板上,剪下一个边长为b的小正方形,如图1,拼成如图2的长方形,你能根据图中的面积说明平方差公式吗?(a+b)(ab)=a2b2.图1图2例例1 运用平方差公式计算:运用平方差公式计算:(1)(3x2)(3x2);(2)(b+2a)(2ab);(3)(-x+2y)(-x-2y).解:(1)(3x2)(3x2)=(3x)222=9x24;(2)(b+2a)(2ab)=(2a+b)(2ab)=(2a)2b2=4a2b2.(3)(-x+2y)(-x-2y)=(-x)
3、2(2y)2=x24y2活动活动3例例2 计算计算(1)10298(2)(y+2)(y-2)-(y-1)(y+5)2.利用平方差公式计算:利用平方差公式计算:(1)(a+3b)(a-3b)=(2)(3+2a)(3+2a)=(3)(2x2y)(2x2+y)=(4)5149=(5)(3x+4)(3x-4)-(2x+3)(3x-2)=(a)2(3b)2=4 a29;=4x4y2.活动活动4 练习练习 1.下面各式的计算对不对?如果不对,应当下面各式的计算对不对?如果不对,应当 怎样改正怎样改正?(1)(x+2)(x2)=x22;(2)(3a2)(3a2)=9a24.(2a+3)(2a-3)=a29b
4、2;=(2a)232(-2x2)2y2(50+1)(50-1)=50212=2500-1=2499(9x216)-(6x2+5x-6)=3x25x+10活动活动5 科学探究科学探究 给出下列算式给出下列算式:3212=8=81;5232=16=82;7252=24=83;9272=32=84.(1)观察上面一系列式子,你能发现什么规律?)观察上面一系列式子,你能发现什么规律?(2)用含用含n的式子表示出来的式子表示出来 (n为正整数)为正整数).(3)计算计算 2005220032=此时此时n=.连续两个奇数的平方差是连续两个奇数的平方差是8的倍数的倍数.(2n+1)2(2n1)2=8n801
5、61002提示:根据2005=2n+1或2003=2n-1求n1.1.通过本节课的学习我有哪些收获?通过本节课的学习我有哪些收获?2.2.通过本节课的学习我有哪些疑惑?通过本节课的学习我有哪些疑惑?3.3.通过本节课的学习我有哪些感受?通过本节课的学习我有哪些感受?作业:第156页 习题 15.2 第1题 练习练习 1.下面各式的计算对不对?如果不对,应当下面各式的计算对不对?如果不对,应当 怎样改正怎样改正?(1)(x+2)(x2)=x22;(2)(3a2)(3a2)=9a24.2.根据公式根据公式(a+b)(ab)=a 2b 2计算计算.(1)(x+y)(xy);(2)(a+5)(5a);(3)(xy+z)(xyz);(4)(ca)(a+c);(5)(x3)(3x).利用平方差公式计算:利用平方差公式计算:(1)(5+6x)(56x);(2)(x2y)(x+2y);(3)(m+n)(mn).活动活动5 知识应用,加深对平方差公式的理解知识应用,加深对平方差公式的理解 下列多项式乘法中,能用平方差公式计算的是下列多项式乘法中,能用平方差公式计算的是():(1)(x+1)(1+x);(2)(a+b)(ba);(3)(a+b)(ab);(4)(x2y)(x+y2);(5)(ab)(ab);(6)(c2d2)(d2+c2).2121