1、 22246448212yx22yx2yx例例3(1)画出函数画出函数 的图象,的图象,解:作函数解:作函数 的图象:的图象:21112yx 21112yx 2224644x432101221112yx 5.51.531 1.55.53抛物线抛物线 的开口方向向下、对称轴是的开口方向向下、对称轴是x=1,顶点是,顶点是(1,1)21112yx 把抛物线把抛物线 向下平移向下平移1个单位,再向左平移个单位,再向左平移1个单位,个单位,就得到抛物线就得到抛物线212yx 21112yx 例例3:(2)指出指出的开口方向、对称轴及顶点的开口方向、对称轴及顶点(3)抛物线抛物线 经过怎样的变换可经过怎
2、样的变换可以得到抛物线以得到抛物线212yx 21112yx 222464421112yx 21112yx 212yx y=ax2(a0)y=a(x-h)2 h0时,向时,向右右平移平移h个单位个单位h0时,向时,向左左平移平移h个单位个单位k0时,向上平移k个单位y=ax2+ky=a(x-h)2+k一般地,抛物线一般地,抛物线 与与 形状形状_,位置不同,把抛物线,位置不同,把抛物线y=ax2向上(下)向左(右)向上(下)向左(右)_,可以得到抛物线,可以得到抛物线 平移的方向、平移的方向、距离要根据距离要根据_的值来决定的值来决定抛物线抛物线 有如下特点:有如下特点:(1)当)当a0时,开
3、口时,开口_;当;当a0时,开口时,开口_;(2)对称轴是直线)对称轴是直线_;(3)顶点坐标是)顶点坐标是_2ya xhk2yaxkhxay22y a x hk相同相同平移平移h,k向上向上向下向下x=h(h,k)抛物线抛物线 经过怎样的变换可以得到抛物线经过怎样的变换可以得到抛物线212yx 222464421112yx 21112yx 212yx 指出下列函数图象的开口方向指出下列函数图象的开口方向,对称轴和顶点坐标,对称轴和顶点坐标,最值,增减性最值,增减性.53212xy 215.02xy 14332xy 52242xy 245.052xy 23436xyy=axy=ax+ky=a(
4、x-h)y=a(x-h)+ka0a0a0a0a0a0a0a0开口方向顶点对称轴最值增减性对学:例例4 要修建一个圆形喷水池,在池中心竖直安装一根水要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为水柱在与池中心的水平距离为1m处达到最高,高度为处达到最高,高度为3m,水柱落地处离池中心,水柱落地处离池中心3m,水管应多长?,水管应多长?解:如图建立直角坐标系,点(解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是此可
5、设这段抛物线对应的函数是y=a(x 1)2 3(0 x3).由这段抛物线经过点(由这段抛物线经过点(3,0)可得)可得0a(31)23.解得解得因此因此当当x=0时,时,y=2.25,也就是说,水管应长,也就是说,水管应长2.25m.43a30 31432xxy1212331抛物线的上下平移抛物线的上下平移(1)把二次函数)把二次函数的图像,的图像,沿沿y轴向上平移个单位,轴向上平移个单位,得到得到_的图像;的图像;(2)把二次函数)把二次函数_的图像,的图像,沿沿y轴向下平移轴向下平移2个单位,得到个单位,得到的图像的图像.考考你学的怎么样考考你学的怎么样:y=(x+1)2+3y=x2+32
6、抛物线的左右平移抛物线的左右平移(1)把二次函数)把二次函数的图像,的图像,沿沿x轴向左平移个单位,轴向左平移个单位,得到得到_的图像;的图像;(2)把二次函数)把二次函数_的图像,的图像,沿沿x轴向右平移轴向右平移2个单位,得到个单位,得到的图像的图像.y=(x+4)2y=(x+2)2+13抛物线的平移:抛物线的平移:(1)把二次函数)把二次函数的图像,的图像,先沿先沿x轴向左平移个单位,轴向左平移个单位,再沿再沿y轴向下平移轴向下平移2个单位,个单位,得到得到_的图像;的图像;(2)把二次函数)把二次函数_的图像,的图像,先沿先沿y轴向下平移轴向下平移2个单位,个单位,再沿再沿x轴向右平移
7、轴向右平移3个单位,个单位,得到得到的图像的图像.y=3(x+3)2-2y=-3(x+6)22121xy4.4.抛物线抛物线的顶点坐标是的顶点坐标是_;2121xy向上平移向上平移3 3个单位后,个单位后,顶点的坐标是顶点的坐标是_;5.5.抛物线抛物线31212xy的对称轴是的对称轴是_.6.6.抛物线抛物线(-1,0)(-1,3)x=-17把二次函数把二次函数的图像的图像,沿沿x轴向轴向 _ 平移平移_个单位,得到图像的对称轴是直个单位,得到图像的对称轴是直线线x=3.8把抛物线把抛物线,先沿,先沿x轴向右轴向右平移平移2个单位,再沿个单位,再沿y轴向下平移轴向下平移1个单位,个单位,得到
8、得到_的图像的图像9把二次函数把二次函数的图像,先沿的图像,先沿x轴轴向左平移个单位,再沿向左平移个单位,再沿y轴向下平移轴向下平移2个单位,得到个单位,得到_ 右右2y=-3x2-1(-3,-2)10.如图所示的抛物线:如图所示的抛物线:当当x=_时,时,y=0;当当x0时,时,y_0;当当x在在 _ 范围内时,范围内时,y0;当当x=_时,时,y有最大值有最大值_.3 0或或-22 x0;解:解:二次函数图象的顶点是二次函数图象的顶点是(1,-1),设抛物线解析式是设抛物线解析式是y=a(x-1)2-1,其图象过点其图象过点(0,0),0=a(0-1)2-1,a=1y=(x-1)2-1x2
9、0 x0时时,开口向上开口向上,在对称轴左侧在对称轴左侧,y都随都随x的增大而减小的增大而减小,在对称在对称轴右侧轴右侧,y都随都随 x的增大而增大的增大而增大.a0时时,向右平移向右平移;当当h0时向上平移时向上平移;当当k0时时,向下平移向下平移)得到的得到的.驶向胜利的彼岸小结 拓展回味无穷二次函数二次函数y=a(x-h)+k与与=ax的关系的关系二次函数图象和性质典型例题二次函数图象和性质典型例题1、已知抛物线、已知抛物线y=(k+1)x2+(k2-2k-3)x+4的对称轴是的对称轴是y轴,轴,求求k=?2、已知抛物线、已知抛物线y=-4(x-5)2,若,若x取取x1、x2时函数值相时
10、函数值相等等,且且x1x2,3、若二次函数、若二次函数y=x2+mx+9的图象顶点在的图象顶点在x轴上,求轴上,求m=?4、平面直角坐标系内,将二次函数、平面直角坐标系内,将二次函数y=2x2+4x+1的图象的图象沿沿x轴向右平移轴向右平移2个单位,再沿个单位,再沿y轴向下平移轴向下平移1个单位,得个单位,得到新函数的顶点坐标是什么?到新函数的顶点坐标是什么?5、将二次函数将二次函数y=2xy=2x2 2-12x+16-12x+16的图象绕它的顶点旋转的图象绕它的顶点旋转180180后,得到新函数的解析式是什么?后,得到新函数的解析式是什么?12?2xxxy则当 取时,二次函数图象和性质典型例题二次函数图象和性质典型例题6、已知抛物线、已知抛物线y=(x-m)2+4,当当m1时,时,y随随x的增的增大而增大,求大而增大,求m的范围是多少?的范围是多少?下课了下课了!
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。