1、2015年中考数学模拟试题 (考试时间:120分钟;满分:120分)一、选择题(本题满分24分,共8道小题,每小题3分)1. 的绝对值等于( )A B5 C D2. 下列几何体中,同一个几何体的主视图与俯视图不同的是() A B C D3观察下列图形,既是轴对称图形又是中心对称图形的有() A1个B2个C3个D4个4. 2013年青岛市初中毕业人数约104人,对这个近似数,下列说法正确的是( ) A. 精确到百分位,有3个有效数字 B. 精确到百位,有3个有效数字 C. 精确到百分位,有5个有效数字 D. 精确到百位,有5个有效数字5. 若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两
2、圆的位置关系是()A内切 B外切 C内含 D 外离 6. 如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份同时自由转动圆盘A和B,圆盘停止后,指针分别指向的两个数字的积为偶数概率是() A B C D 第6题图 第7题图 第8图 7. 在如图所示的单位正方形网格中,ABC经过平移后得到A1B1C1,已知在AC上一点P(,2)平移后的对应点为P1,点P1绕点O逆时针旋转180,得到对应点P2,则P2点的坐标为() A(,1) B(,2) C(,1) D(,1) 8. 如图,一次函数y1=k1x+2与反比例函数y2 的图象交点A(m,4)和B(-8,-2)两点,若y1
3、y2,则x的取值范围是()Ax 4或8 x 0 Bx 8或0 x 4 C8 x4 Dx4二、填空题(本题满分18分,共有6道小题,每小题3分)9. 计算= _. 10. 张老师对同学们的打字能力进行测试,他将全班同学分成五组经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是_.11小明和小丽同时从学校出发,去15千米处的景区游玩,小明比小丽每小时多行1千米,结果比小丽早到半小时,小明、小丽每小时各行多少千米若设小丽每小时行x千米,根据题意列出的方程是_.12. 如图,在等腰ABC中,AB=AC,BAC=50BAC的平分
4、线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则CEF的度数是 _度. 第12题图 第13题图 第14题图13. 如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为_.14. 如图,在平面直角坐标系中,有若干个整数点,按顺序(0,0),(1,0),(1,1),(2,1),(2,0),(2,-1)这样排列根据这个规律探索可知,第10个点的坐标为_,3,2)_-第100个点的坐标为_.(13,2)三、作图题:(本题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.15. 如图,四边形区域是音乐
5、广场的一部分,现在要在这一区域建一个喷泉,要求喷泉到两条道路OA,OB的距离相等,且到一个入口C的距离等于A,B两个入口之间距离的一半. 请确定喷泉的位置P.OABC四、解答题(本题满分74分,共9道小题)16(本题满分8分,每小题4分)(1) 解方程组 (2) 化简: 17(本题满分6分)学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题(1)样本中最喜欢A项目的人数所占的百分比为_,其所在扇形统计图中对应的圆心角度
6、数是_度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少解: 18.(本题满分6分) 某超市举行酬宾促销活动,设立了一个可以自由转动的转盘(如图,转盘被平均分成16份),并规定:顾客每购买99元的商品,就能获得一次转动转盘的机会如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该超市继续购物如果顾客不愿意转转盘,那么可以直接获得购物券10元(1)一位在该超市消费100元的顾客,选择转动转盘,他获得50元购物券的概率是多少(2)请通过计算说明转转盘和直接获得购物券,哪
7、种方式对顾客更合算解:(1)(2)19.(本题满分6分)某园艺公司参加“世园会”,计划拿出1430盆甲种花卉和1220盆乙种花卉,搭配成A、B两种园艺造型共20个. 已知搭配A、B两种园艺造型各需甲、乙两种花卉数如表所示:(单位:盆)造型AB甲种花卉8050乙种花卉4090符合题意的搭配方案有哪几种请你帮忙设计出来解:20.(本题满分8分)如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西方向,求此时海检船所在B处与城市P的距离(参考数据:,)解:ABCDMNPQ21.(
8、本题满分8分)已知:如图,在ABCD中,M、N分别是AB、DC的中点,P、Q分别是DM、BN的中点.(1)求证:MDANBC;(2)判断四边形MPNQ是什么特殊四边形,并证明你的结论.(3)当ABCD满足_时,四边形MPNQ是菱形.(只添加一个条件,不需证明)证明:22.(本题满分10分) 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具设该种品牌玩具的销售单价为x元(x40),销售该品牌玩具获得利润y元.(1)求出y与x的函数关系式,并通过计算说明销售单价定为多少元时,可以获得最大利润最
9、大利润是多少元(2)若商场获得了10000元销售利润,求该玩具销售单价x定为多少元(3) 若物价部门规定,该品牌玩具销售单价不得高于58元,如果商场想要获得不低于10000元的销售利润,这种玩具的进货成本最少需要多少元解:23.(本题满分10分) 问题背景: 如图(1),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B,连接A B与直线l交于点C,则点C即为所求. 图(1) 图(2) 图(3)(1)实践运用: 如图(2),已知,O的直径CD为4,点A 在O 上,ACD=30,B 为的中点,P为直径CD上一动点,则BP+AP的最小值为_
10、(2)知识拓展:如图(3),在RtABC中,AB=10,BAC=45,BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程解:24.(本题满分12分)ABCPEF已知:如图,在RtABC中,C=90,AC=8cm,BC=6cm. 直线PE从B点出发,以2cm/s的速度向点A方向运动,并始终与BC平行,与AC交于点E. 同时,点F从C点出发,以1cm/s的速度沿CB向点B运动,设运动时间为t (s)(0t5).(1)当t为何值时,四边形PFCE是矩形(2)设PEF的面积为S(cm2),求S与t的函数关系式;(3)是否存在某一时刻t,使PEF的面积是ABC面积的若存在,求出t的值;若不存在,请说明理由.(4)连接BE,是否存在某一时刻t,使PF经过BE的中点若存在,求出t的值;若不存在,请说明理由.
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。