1、第一章 三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是() A、一组对边平行,另一组对边相等的四边形是平行四边形。B、等腰梯形的两个角一定相等。C、对角线互相垂直的四边形是菱形。D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等.2、用直尺和圆规作一个角等于已知角的示意图如下,则说明AOB=AOB的根据是()A、SAS B、ASA C、AAS D、SSS3、等腰三角形一腰上的高与另一腰的夹角为30,则顶角的度数为( ) A、60 B、120 C、60或150 D、60或1204、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE
2、交CD于点F,则AFC的度数是()A、150 B、125 C、135 D、112.55、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A、SSS B、SAS C、AAS D、ASA6、以下列各组线段长为边能组成三角形的是( ) A、1cm,2cm,4cm; B、8cm,6cm,4cm; C、12cm,5cm,6cm D、2cm,3cm,6cm7、下列命题中,真命题的是() A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形C、如果一个四
3、边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是( ) 全等三角形的周长相等 全等三角形的对应角相等全等三角形的面积相等 面积相等的两个三角形全等、 A、4 B、3 C、2 D、19、若ABCDEF,ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长( ) A、55cm B、45cm C、30cm D、25cm10、在ABC中,B的平分线与C的平分线相交于O,且BOC=130,则A=( ) A、50 B、60 C、80 D、100二、填空题(共8题;共24分)11、用直尺和圆规作一个角
4、等于已知角的示意图如图所示,则说明DOCDOC的依据是_、12、如图,AD是ABC的边BC上的中线,已知AB=5cm,AC=3cm,则ABD与ACD的周长之差为_cm、13、ABC中,BAC:ACB:ABC=4:3:2,且ABCDEF,则DEF=_度、 14、三角形的三条角平分线交于一点,这点到三条边的距离相等; 三角形的三条中线交于一点;三角形的三条高线所在的直线交于一点;三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等、以上说法中正确的是_、 15、如图,BF、CF是ABC的两个外角的平分线,若A=50,则BFC=_度、 16、如图,点D,B,C点在同一条直线上,A=60,C=
5、50,D=25,则1=_度、 17、如图所示,BEAC于点D,且AB=CB,BD=ED,若ABC=64,则E=_、 18、如图,在ABC中,将C沿DE折叠,使顶点C落在ABC内C处,若A=75,B=65,1=40,则2的度数为_、 三、解答题(共5题;共36分)19、如图,已知E是AOB的平分线上的一点,ECOA,EDOB,垂足分别是C,D、求证:OE垂直平分CD、 20、如图,在ABC中,CDAB,垂足为D,点E在BC上,EFAB,垂足为F、1=2,3=105,求ACB的度数、 21、如图,已知DEBC,CD是ACB的平分线,B=70,ACB=50,求EDC和BDC的度数、 22、如图所示,
6、已知ACB和ADB都是直角,且AC=AD,P是AB上任意一点、 求证:CP=DP、23、如图,OM平分POQ,MAOP,MBOQ,A、B为垂足,AB交OM于点N、 求证:OAB=OBA、四、综合题(共1题;共10分)24、如图,在RtABC中,C=90,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE、 (1)证明DECB; (2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形、 答案解析部分一、单选题1、【答案】D 【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理 【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直
7、平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果、【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D、【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项、2、【答案】D 【考点】全等三角形的判定与性质 【解析】【分析】由作法易得OD=OD,OC=OC,CD=CD
8、,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等、【解答】由作法易得OD=OD,OC=OC,CD=CD,依据SSS可判定CODCOD(SSS),则CODCOD,即AOB=AOB(全等三角形的对应角相等)、故选D、【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键、 3、【答案】D 【考点】三角形内角和定理,等腰三角形的性质 【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上、根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行
9、讨论。当高在三角形内部时(如图1),顶角是60;当高在三角形外部时(如图2),顶角是120、故选D、【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60一种情况,把三角形简单的认为是锐角三角形。 4、【答案】D 【考点】三角形的外角性质,等腰三角形的性质,正方形的性质 【解析】【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解。四边形ABCD是正方形,CE=CAACE=45+90=135,E=22.5AFC=90+22.5=112.5、故选D.【点评】解题关键是熟练掌握三角形的外角的性质:三角形的一个外角等于与它
10、不相邻的两个内角的和。 5、【答案】D 【考点】全等三角形的判定 【解析】【分析】根据三角形全等的判定方法可知:除去被墨迹污染的部分仍然有两个角及夹边确定,可以根据ASA确定所画三角形与原三角形全等。故选D. 6、【答案】 B【考点】三角形三边关系【解析】【分析】三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边。A、1+24,C、5+612,D、2+38,能组成三角形。7、【答案】B 【考点】命题与定理 【解析】【解答】解:A、如果一个四边形两条对角线相等,那么这个四边形不一定是矩形,还有可能是等腰梯形,故错误;B、如果一个平行四边形两条对角线相互垂直,那么这个平行四边形是
11、菱形,故正确;C、如果一个四边形两条对角线平分所在的角,那么这个四边形可能是正方形,故错误;D、如果一个四边形两条对角线相互垂直平分,这个四边形有可能是菱形,故错误;故选B、【分析】利于矩形、菱形的判定定理分别判断后即可确定正确的选项、 8、【答案】B 【考点】命题与定理 【解析】【解答】解:全等三角形的周长相等,所以正确;全等三角形的对应角相等,所以正确;全等三角形的面积相等,所以正确; 面积相等的两个三角形不一定全等,所以错误、 故选B、【分析】根据全等三角形的性质对进行判断;根据全等三角形的判定方法对进行判断、 9、【答案】B 【考点】全等三角形的性质 【解析】【解答】解:ABCDEF,
12、 AB=DE,AC=DF,BC=EF,DE=30cm,DF=25cm,AB=30cm,AC=25cm,ABC的周长为100cm,CB=1003025=45(cm),故选:B、【分析】根据全等三角形的性质可得AB=DE,AC=DF,BC=EF,再根据ABC的周长为100cm可得答案、 10、【答案】 C【考点】三角形内角和定理【解析】【解答】解:BOC=130, OBC+OCB=180BOC=180130=50,BO和CO分别平分ABC和ACB,ABC=2OBC,ACB=2OCB,ABC+ACB=2(OBC+OCB)=100,A=180(ABC+ACB)=180100=80,故选C、【分析】在B
13、OC中由三角形的内角和可求得OBC+OCB=50,再由角平分线的定义可得ABC+ACB=2(OBC+OCB)=100,在ABC中再利用三角形内角和定理可求得A、二、填空题11、【答案】SSS 【考点】作图尺规作图的定义 【解析】【解答】OC=OC,OD=OD,CD=CD,从而可以利用SSS判定其全等【分析】以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;任意画一点O,画射线OA,以O为圆心,OC长为半径画弧CE , 交OA于点C;以C为圆心,CD长为半径画弧,交弧CE于点D;过点D画射线OB,AOB就是与AOB相等的角、则通过作图我们可以得到OC=OC,OD=OD,CD=CD,
14、从而可以利用SSS判定其全等 12、【答案】 2【考点】三角形的角平分线、中线和高【解析】【解答】解:AD是ABC中BC边上的中线,BD=DC=BC,ABD和ADC的周长的差=(AB+BC+AD)(AC+BC+AD)=ABAC=53=2(cm)、故答案为:2、【分析】根据三角形的周长的计算方法得到,ABD的周长和ADC的周长的差就是AB与AC的差、13、【答案】40 【考点】全等三角形的性质 【解析】【解答】解:设BAC为4x,则ACB为3x,ABC为2xBAC+ACB+ABC=1804x+3x+2x=180,解得x=20ABC=2x=40ABCDEFDEF=ABC=40、故填40、【分析】先
15、运用三角形内角和求出ABC=40再运用全等三角形的性质即可得、 14、【答案】 【考点】三角形的角平分线、中线和高,角平分线的性质,线段垂直平分线的性质 【解析】【解答】解:三角形的三条角平分线交于一点,这点到三条边的距离相等,正确; 三角形的三条中线交于一点,正确;三角形的三条高线所在的直线交于一点,正确;三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等,正确、综上所述,说法正确的是、故答案为:、【分析】根据角平分线上的点到角的两边距离相等,三角形中线、高线的性质以及线段垂直平分线上的点到线段两端点的距离相等对各小题分析判断即可得解、 15、【答案】65 【考点】三角形内角和定理
16、,三角形的外角性质 【解析】【解答】解:A=50, ABC中,ABC+ACB=130,BCE+CBD=360130=230,BF、CF是ABC的两个外角的平分线,CBF+BCF= (BCE+CBD)= 230=115,BCF中,F=180115=65、故答案为:65【分析】先根据三角形内角和定理,求得ABC+ACB=130,得到BCE+CBD=360130=230,再根据BF、CF是ABC的两个外角的平分线,求得CBF+BCF,最后根据三角形内角和定理,求得F的度数、 16、【答案】45 【考点】三角形内角和定理,三角形的外角性质 【解析】【解答】解:ABD是ABC的外角,ABD=A+C=60
17、+50=110, 1=180ABDD=18011025=45、【分析】根据三角形的外角的性质及三角形的内角和定理可求得、 17、【答案】32 【考点】全等三角形的判定与性质 【解析】【解答】解:AB=CB,BEAC, AD=DC,ABD=CBD= ABC= 64=32,在ABD和CED中,ABDCED(SAS),E=ABD=32,故答案为:32、【分析】根据三线合一得出AD=DC,ABD=27,证ABDCED,推出E=ABD即可、 18、【答案】40 【考点】三角形内角和定理,翻折变换(折叠问题) 【解析】【解答】解:如图,CEF+CFE+C=A+B+C, CEF+CFE=A+B=75+65=
18、140,又将纸片的一角折叠,使点C落在ABC内,CEF+CF=CEF+CFE=140,CEC+CEC=140+140=280,1=40,2=1802CEC+CEC1=36028040=40、故答案为:40、【分析】先根据三角形的内角和定理求出CEF+CFE=A+B,再根据折叠变换的性质,即可求出CEC+CEC的度数,然后利用两个平角的度数求解即可、 三、解答题19、【答案】证明:E是AOB的平分线上一点,ECOA,EDOB, DE=CE,OE=OE,在RtODE与RtOCE中,RtODERtOCE(HL),OD=OC,DOC是等腰三角形,OE是AOB的平分线,OE是CD的垂直平分线 【考点】全
19、等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质 【解析】【分析】先根据E是AOB的平分线上一点,ECOB,EDOA得出ODEOCE,可得出OD=OC,DE=CE,OE=OE,可得出DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线、 20、【答案】解:CDAB,EFAB, CDEF,2=BCD,又1=2,1=BCD,DGBC,ACB=3=105 【考点】平行线的判定与性质,三角形内角和定理 【解析】【分析】证明CDEF,得到2=BCD,证明DGBC,根据平行线的性质证明即可、 21、【答案】解:CD是ACB的平分线,ACB=50, BCD= ACB=25,DEBC
20、,EDC=DCB=25,BDE+B=180,B=70,BDE=110,BDC=BDEEDC=11025=85、EDC=25,BDC=85 【考点】平行线的性质,三角形内角和定理 【解析】【分析】由CD是ACB的平分线,ACB=50,根据角平分线的性质,即可求得DCB的度数,又由DEBC,根据两直线平行,内错角相等,即可求得EDC的度数,根据两直线平行,同旁内角互补,即可求得BDE的度数,即可求得BDC的度数、 22、【答案】证明:在RtACB和RtADB中, , RtACBRtADB(HL)、BC=BD,CBA=DBA、BP=BP,CBPDBP(SAS)、CP=DP、 【考点】全等三角形的判定
21、与性质 【解析】【分析】先根据HL判定RtACBRtADB得出BC=BD,CBA=DBA,再利用SAS判定CBPDBP从而得出CP=DP、 23、【答案】证明:OM平分POQ,MAOP,MBOQ, AM=BM,在RtAOM和RtBOM中, ,RtAOMRtBOM(HL),OA=OB,OAB=OBA 【考点】全等三角形的判定与性质,角平分线的性质 【解析】【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明RtAOM和RtBOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证、 四、综合题24、【答案】(1)证明:连结CE、 点E为RtA
22、CB的斜边AB的中点,CE= AB=AE、ACD是等边三角形,AD=CD、在ADE与CDE中, ,ADECDE(SSS),ADE=CDE=30、DCB=150,EDC+DCB=180、DECB(2)解:当AC= 或AB=2AC时,四边形DCBE是平行四边形, 理由:AC= ,ACB=90,B=30,DCB=150,DCB+B=180,DCBE,又DEBC,四边形DCBE是平行四边形、 【考点】全等三角形的判定与性质,等边三角形的性质,平行四边形的判定 【解析】【分析】(1)首先连接CE,根据直角三角形的性质可得CE= AB=AE,再根据等边三角形的性质可得AD=CD,然后证明ADECDE,进而得到ADE=CDE=30,再有DCB=150可证明DECB;(2)当AC= 或AB=2AC时,四边形DCBE是平行四边形、根据(1)中所求得出DCBE,进而得到四边形DCBE是平行四边形、
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。