1、精品文档 用心整理苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习整式的乘除与因式分解全章复习与巩固(提高) 【学习目标】1. 掌握整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种
2、分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方: (为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1.6.负指数幂:(,为正整数).任何不等于0的数的次幂,等于这个数的次幂的倒数. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地
3、双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“”“”号是性质符号,单项式乘以多项式各项的结果,要用“”连结,最后写成省略加号的代数和的形式根据多项式的乘法,能得出一个应用比较广泛
4、的公式:.要点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式. 平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:
5、提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用: 首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、已知,求的值【思路点拨】由于已知的值,所以逆用幂的乘方把变为,再代入计算【答案与解析】解:,【总结升华】本题培养了学生的整体思想和逆向思维能力举一反三:【 整式的乘除与因式分解单元复习 例1】【变式】(1)已知,比较的大小.(2)比较大小。【答案】解:(1), 所以; (2),所以提示:(1)转化为同指数不
6、同底数的情况进行比较,指数转化为12;(2)转化成比较同底数不同指数,底数转化为3.类型二、整式的乘除法运算2、(2015杭州模拟)已知代数式(mx2+2mx1)(xm+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数【答案与解析】解:(mx2+2mx1)(xm+3nx+2)=mxm+2+3mnx3+2mx2+2mxm+1+6mnx2+4mxxm3nx2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(83n)x2多项式不含二次项3+12n=0,解得:n=,所以一次项系数83n=8.75【
7、总结升华】本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答举一反三:【变式】若的乘积中不含的一次项,则等于_【答案】;类型三、乘法公式3、计算:(1);(2)【思路点拨】(1)中可以将两因式变成与的和差.(2)中可将两因式变成与的和差.【答案与解析】 解:(1)原式 (2)原式 .【总结升华】(1)在乘法计算中,经常同时应用平方差公式和完全平方公式(2)当两个因式中的项非常接近时,有时通过拆项用平方差公式会达到意想不到的效果 举一反三:【变式】计算:【答案】解:4、已知,求代数式的值.【思路点拨】将原式
8、配方,变成几个非负数的和为零的形式,这样就能解出.【答案与解析】解: 所以所以.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.举一反三:【变式】配方,求_.【答案】解:原式所以,解得所以.5、求证:无论为何有理数,多项式的值恒为正数【答案与解析】解:原式 所以多项式的值恒为正数.【总结升华】通过配方,将原式变成非负数正数的形式,这样可以判断多项式的正负.举一反三: 【变式】证明:不论为何值 , 多项式的值一定小于0. 【答案】证明: , , 原式一定小于0.类型四、因式分解6、分解因式:(1)(2)(3)【答案与解析】解:(1)原式(2)原式 (
9、3)原式【总结升华】做题之前要仔细观察,注意从整体的角度看待问题.举一反三:【变式】(2015秋罗山县期末)下面是某同学对多项式(x24x+2)(x24x+6)+4进行因式分解的过程解:设x24x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x24x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 A提取公因式B平方差公式C两数和的完全平方公式D两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 (3)请你模仿以上方法尝试对多项式(x22x)(x22x+2)+1进行因式分解【答案与解析】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x24x+4)2=(x2)4;故答案为:不彻底,(x2)4;(3)(x22x)(x22x+2)+1=(x22x)2+2(x22x)+1=(x22x+1)2=(x1)4资料来源于网络 仅供免费交流使用
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。