1、历年高考题型总结及详解倒数内容简介 :1.有关倒数考试方向及常考点. 2.常考点方法总结及名师点拨. 3.20142016各地历年高考题及解析. 4.名校有关模拟题母题.【命题意图】 导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【考试方向】 含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参
2、数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等.【得分要点】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函
3、数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参
4、数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论; (2)导数为零的自变量是否在给定的区间内不确定需要讨论; (3)端点处的函数值和极值大小不确定需要讨论; (4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.5.求可导函数单调区间的一般步骤 (1)确定函数的定义域(定义域优先); (2)求导函数; (3)在函数的定义域内求不等式或的解集 (4)由()的解集确定函数的单调增(减)区间若遇不等式中带有参数时,可分类讨论求得单调区间6由函数在上的单调性,求参数范围问题,可转化为 (或)恒成立问题,要注意“”是否可以取到7. 求
5、函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念8. 函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9. 导数及其应用通常围绕四个点进行命题第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、
6、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个
7、设问,考查的核心是导数研究函数性质的方法和函数性质的应用10. 函数的单调性问题与导数的关系 (1)函数的单调性与导数的关系:设函数在某个区间内可导,若,则为增函数;若,则为减函数. (2)用导数函数求单调区间方法 求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论; (3) 已知在某个区间上的单调性求参数问题 先求导函数,将其转化为导函数在这个区间上大于
8、(增函数)(小于(减函数)0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加. (4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集.11.函数的极值与导数(1)函数极值的概念设函数在附近有定义,若对附近的所有点,都有,则称是函数 的一个极大值,记作=;设函数在附近有定义,若对附近的所有点,都有,则称是函数 的一个极小值,记作=.注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值
9、;极值点不能在函数端点处取.(2)函数极值与导数的关系当函数在处连续时,若在附近的左侧,右侧,那么是极大值;若在附近的左侧,右侧,那么是极小值.注意:在导数为0的点不一定是极值点,如函数,导数为,在处导数为0,但不是极值点;极值点导数不定为0,如函数在的左侧是减函数,右侧是增函数,在处取极小值,但在处的左导数=-1,有导数=1,在处的导数不存在.(3)函数的极值问题 求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;已知极值求参
10、数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.12. 最值问题(1)最值的概念 对函数有函数值使对定义域内任意,都有()则称是函数的最大(小)值. 注意:若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值. 最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值. (2)函数最问题 对求
11、函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值; 对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()( 是自变量,是参数)恒成立问题,(),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.(2016高考山东理数)已知.()讨论的单调性;(II)略考点:应用导数研究函数的单调性【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性、分类讨论思想.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全
12、面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.(2016高考天津理数)设函数,,其中()求的单调区间;(II)略;()略.【答案】()当时,单调递增区间为;当时,单调递减区间为,单调递增区间为,. 【解析】()解:由,可得.下面分两种情况讨论:【名师点睛】1.求可导函数单调区间的一般步骤 (1)确定函数的定义域(定义域优先); (2)求导函数; (3)在函数的定义域内求不等式或的解集 (4)由()的解集确定函数的单调增(减)区间若遇不等式中带有参数时,可分类讨论求得单调区间 2由函数在上的单调性,求参数范围问题,可
13、转化为 (或)恒成立问题,要注意“”是否可以取到2016高考真题及名校模拟题母题【母题1】()讨论函数的单调性,并证明当时,; ()证明:当时,函数有最小值.设的最小值为,求函数的值域【答案】()详见解析;().考点: 函数的单调性、极值与最值. 【名师点睛】求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求导数f(x);(3)由f(x)0(f(x)0)解出相应的x的范围当f(x)0时,f(x)在相应的区间上是增函数;当f(x)0时,f(x)在相应的区间上是减函数,还可以列表,写出函数的单调区间注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意
14、函数最值是个“整体”概念,而极值是个“局部”概念【母题2】设函数,曲线在点处的切线方程为,(1)求,的值; (2)求的单调区间.【答案】(),;(2)的单调递增区间为.【解析】(1)因为,所以.依题设,即解得;(2)由()知.由即知,与同号.令,则.所以,当时,在区间上单调递减;当时,在区间上单调递增.故是在区间上的最小值,从而.综上可知,故的单调递增区间为.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点【母题3】设函
15、数f(x)=ax2-a-lnx,其中a R.()讨论f(x)的单调性;()确定a的所有可能取值,使得在区间(1,+)内恒成立(e=2.718为自然对数的底数).考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题. 【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明函数不等式,一般证明的最小值大于0,为此要研究函数的单调性本题中注意由于函数有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围比较新颖,学生不易想到有一定的难度【母题4】已知函
16、数. (1)试讨论的单调性; (2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a 的取值范围恰好是,求c的值.【答案】(1)当时, 在上单调递增;当时, 在,上单调递增,在上单调递减;当时, 在,上单调递增,在上单调递减(2)【考点定位】利用导数求函数单调性、极值、函数零点【名师点晴】求函数的单调区间的步骤:确定函数yf(x)的定义域;求导数yf(x),令f(x)0,解此方程,求出在定义区间内的一切实根;把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;确定f(x)在各个区间内的符
17、号,根据符号判定函数在每个相应区间内的单调性已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.【母题5】设函数. ()讨论函数在内的单调性并判断有无极值,有极值时求出极值; ()记,求函数在上的最大值D; ()在()中,取,求满足时的最大值.【答案】()极小值为;(); ()1.【解析】(),. ,. 因为,所以. 当时,函数单调递增,无极值. 当时,函数单调递减,无极值. 【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.【名师点睛】函数、导数解答题中贯穿始终
18、的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.【母题6】已知函数,其中.(I)讨论的单调性;(II)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(III)若关于的方程有两个正实根,求证: 【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不
19、等式.第(I)小题求导后分为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.【母题7】已知函数,其中.(1)设是的导函数,评论的单调性; (2)证明:存在,使得在区间内恒成立,且在内有唯一解.【答案】(1)当时,在区间上单调递增, 在区间上单调递减;当时,在区间上单调递增.(2)详见解析.【考点定位】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想.【考点定位
20、】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想.【名师点睛】本题作为压轴题,难度系数应在0.3以下.导数与微积分作为大学重要内容,在中学要求学生掌握其基础知识,在高考题中也必有体现.一般地,只要掌握了课本知识,是完全可以解决第(1)题的,所以对难度最大的最后一个题,任何人都不能完全放弃,这里还有不少的分是志在必得的.解决函数题需要的一个重要数学思想是数形结合,联系图形大胆猜想. 在本题中,结合待证结论,可以想象出的大致图象,要使得在区间内恒成立,且在内有唯一解,则这个解应为
21、极小值点,且极小值为0,当时,的图象递减;当时,的图象单调递增,顺着这个思想,便可找到解决方法.【母题8】已知数列的各项均为正数,为自然对数的底数()求函数的单调区间,并比较与的大小;()计算,由此推测计算的公式,并给出证明;()令,数列,的前项和分别记为, 证明:. 【考点定位】导数的应,数列的概念,数学归纳法,基本不等式,不等式的证明.【名师点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的运用数学归纳法应注意以下三点:(1)nn0时成立,要弄清楚命题的含义(2)由假设nk成立证n
22、k1时,要推导详实,并且一定要运用nk成立的结论(3)要注意nk到nk1时增加的项数【母题9】设,函数 (1) 求的单调区间 ; (2) 证明:在上仅有一个零点; (3) 若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:【答案】(1);(2)见解析;(3)见解析【解析】(1)依题, 在上是单调增函数;(2) , 且,【考点定位】导数与函数单调性、零点、不等式,导数的几何意义等知识【名师点睛】本题主要考查导数与函数单调性、零点、不等式恒成立,导数的几何意义等基础知识,属于中高档题,解答此题关键在于第(1)问要准确求出的导数,第(2)问首先要说明内有零点再结合函数在单调性
23、就易证其结论,第(3)问由导数的几何意义易得对比要证明的结论后要能认清的放缩作用并利用导数证明成立,则易证【母题10】设函数 (1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程; (2)若在上为减函数,求的取值范围。【答案】(1),切线方程为;(2).2015高考真题及名校模拟题母题1.【2015高考福建,文12】“对任意,”是“”的( )A充分而不必要条件 B必要而不充分条件 C 充分必要条件 D既不充分也不必要条件【答案】B【解析】当时,构造函数,则故在单调递增,故,则; 当时,不等式等价于,构造函数,则,故在递增,故,则综上所述,“对任意,”是“”的必要不充分条件,选B【考点定
24、位】导数的应用【名师指点】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题.2.【2015高考湖南,文8】设函数,则是( )A、奇函数,且在(0,1)上是增函数 B、奇函数,且在(0,1)上是减函数C、偶函数,且在(0,1)上是增函数 D、偶函数,且在(0,1)上是减函数【答案】A【解析】函数,函数的定义域为(-1,1),函数所以函数是奇函数 ,在(0,1)上 ,所以在(0,1)上单调递增,故选A.【考点定位】利用导数研究函数的性质【名师指点】利用导数研究函数在(a,b)内的单调性的步骤:(1)求;(2)确
25、认在(a,b)内的符号;(3)作出结论:时为增函数;时为减函数研究函数性质时,首先要明确函数定义域.3.【2015高考北京,文19】(本小题满分13分)设函数,(I)求的单调区间和极值;(II)证明:若存在零点,则在区间上仅有一个零点【答案】(I)单调递减区间是,单调递增区间是;极小值;(II)证明详见解析.由解得.与在区间上的情况如下:所以,的单调递减区间是,单调递增区间是;在处取得极小值.()由()知,在区间上的最小值为.因为存在零点,所以,从而.当时,在区间上单调递减,且,所以是在区间上的唯一零点.当时,在区间上单调递减,且,所以在区间上仅有一个零点.综上可知,若存在零点,则在区间上仅有
26、一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题.【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题利用导数求函数的单调性与极值的步骤:确定函数的定义域;对求导;求方程的所有实数根;列表格证明函数仅有一个零点的步骤:用零点存在性定理证明函数零点的存在性;用函数的单调性证明函数零点的唯一性【考点定位】复合函数的导数,函数的极值,切线,单调性考查综合运用数学思想方法分析与解决问题的能力【名师点晴】导数及其应用通常围绕四个点进行命题第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参
27、数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来
28、分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;本题涉及第一个点和第二个点,主要注意问题的转化,转化为不等式恒成立,转化为二次函数的性质4.【2015高考福建,文22】已知函数()求函数的单调递增区间;()证明:当时,;()确定实数的所有可能取值,使得存在,当时,恒有5.【2015高考山东,文20】设函数. 已知曲线 在点处的切线与直线平行.()求的值;()是否存在自然数,使得方程在内存在唯一的根?如果存在,求出;如果不存在,请说明理由;()设函数(表示,中的较小值),求的最大值.【答案】(I) ;(II) ;(III)
29、 .【解析】(I)由题意知,曲线在点处的切线斜率为,所以,又所以.(II)时,方程在内存在唯一的根.设当时,.又所以存在,使.因为所以当时,当时,所以当时,单调递增.所以时,方程在内存在唯一的根.(III)由(II)知,方程在内存在唯一的根,且时,时,所以.当时,若若由可知故当时,由可得时,单调递增;时,单调递减;可知且.综上可得函数的最大值为.【考点定位】1.导数的几何意义;2.应用导数研究函数的单调性、最值;3.函数零点存在性定理.【名师指点】本题考查了导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等,解答本题的主要困难是(II)(III)两小题,首先是通过构造函数,利用函数零
30、点存在性定理,作出判断,并进一步证明函数在给定区间的单调性,明确方程在内存在唯一的根.其次是根据(II)的结论,确定得到的表达式,并进一步利用分类讨论思想,应用导数研究函数的单调性、最值.本题是一道能力题,属于难题.在考查导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等基础知识的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力及分类讨论思想.本题是教辅材料的常见题型,有利于优生正常发挥.6.【2015高考四川,文21】已知函数f(x)2lnxx22axa2,其中a0.()设g(x)为f(x)的导函数,讨论g(x)的单调性;()证明:存在a(0,1),使得f(x)0恒成立
31、,且f(x)0在区间(1,)内有唯一解.【解析】()由已知,函数f(x)的定义域为(0,)g(x)f (x)2(x1lnxa)所以g(x)2当x(0,1)时,g(x)0,g(x)单调递减当x(1,)时,g(x)0,g(x)单调递增()由f (x)2(x1lnxa)0,解得ax1lnx令(x)2xlnxx22x(x1lnx)(x1lnx)2(1lnx)22xlnx则(1)10,(e)2(2e)0于是存在x0(1,e),使得(x0)0令a0x01lnx0u(x0),其中u(x)x1lnx(x1)由u(x)10知,函数u(x)在区间(1,)上单调递增故0u(1)a0u(x0)u(e)e21即a0(0
32、,1)当aa0时,有f (x0)0,f(x0)(x0)0再由()知,f (x)在区间(1,)上单调递增当x(1,x0)时,f (x)0,从而f(x)f(x0)0当x(x0,)时,f (x)0,从而f(x)f(x0)0又当x(0,1时,f(x)(xa0)22xlnx0故x(0,)时,f(x)0综上所述,存在a(0,1),使得f(x)0恒成立,且f(x)0在区间(1,)内有唯一解.【考点定位】本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、化归与转化等数学思想.【名师指点】本题第()问隐藏二阶导数知识点,由于
33、连续两次求导后,参数a消失,故函数的单调性是确定的,讨论也相对简单.第()问需要证明的是:对于某个a(0,1),f(x)的最小值恰好是0,而且在(1,)上只有一个最小值.因此,本题仍然要先讨论f(x)的单调性,进一步说明对于找到的a,f(x)在(1,)上有且只有一个等于0的点,也就是在(1,)上有且只有一个最小值点.属于难题.7.【2015高考新课标1,文21】(本小题满分12分)设函数.(I)讨论的导函数的零点的个数;(II)证明:当时.【答案】(I)当时,没有零点;当时,存在唯一零点.(II)见解析【解析】试题分析:(I)先求出导函数,分与考虑的单调性及性质,即可判断出零点个数;(II)由
34、(I)可设在的唯一零点为,根据的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于,即证明了所证不等式.试题解析:(I)的定义域为,.当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增.又,当b满足且时,,故当时,存在唯一零点.(II)由(I),可设在的唯一零点为,当时,;当时,.故在单调递减,在单调递增,所以当时,取得最小值,最小值为.由于,所以.故当时,.考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.【名师指点】导数的综合应用是高考考查的重点和热点,解决此类问题,要熟练掌握常见函数的导数和导数的
35、运算法则、掌握通过利用导数研究函数的单调性、极值研究函数的图像与性质.对函数的零点问题,利用导数研究函数的图像与性质,画出函数图像草图,结合图像处理;对恒成立或能处理成立问题,常用参变分离或分类讨论来处理.8.【2015高考重庆,文19】已知函数()在x=处取得极值.()确定的值,()若,讨论的单调性.【答案】(),()在 内为减函数,内为增函数.【解析】试题分析:()先求出函数的导函数,由已知有可得关于的一个一元方程,解之即得的值,()由()的结果可得函数,利用积的求导法则可求出,令,解得.从而分别讨论,及时的符号即可得到函数的单调性试题解析: (1)对求导得因为在处取得极值,所以,即,解得
36、.(2)由(1)得,, 故令,解得.当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上知在 内为减函数,内为增函数.【考点定位】1. 导数与极值,2. 导数与单调性.【名师指点】本题考查函数导数的概念和运算,运用导数研究函数的单调性及导数与函数极值之间的关系,利用函数的极值点必是导数为零的点,使导函数大于零的x的区间函数必增,小于零的区间函数必减进行求解,本题属于中档题,注意求导的准确性及使导函数大于零或小于零的x的区间的确定.9.【2015高考新课标2,理12】设函数是奇函数的导函数,当时,则使得成立的的取值范围是( )A BC D【答案】A【考点定位】导数
37、的应用、函数的图象与性质【名师指点】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题10.【2015高考新课标1,理12】设函数=,其中a1,若存在唯一的整数,使得0,则的取值范围是( )(A)-,1) (B)-,) (C),) (D),1)【答案】D【解析】设=,由题知存在唯一的整数,使得在直线的下方.因为,所以当时,0,当时,0,所以当时,=,当时,=-1,直线恒过(1,0)斜率且,故,且,解得1,故选D.【考点定位】本题主要通过利
38、用导数研究函数的图像与性质解决不等式成立问题【名师指点】对存在性问题有三种思路,思路1:参变分离,转化为参数小于某个函数(或参数大于某个函数),则参数该于该函数的最大值(大于该函数的最小值);思路2:数形结合,利用导数先研究函数的图像与性质,再画出该函数的草图,结合图像确定参数范围,若原函数图像不易做,常化为一个函数存在一点在另一个函数上方,用图像解;思路3:分类讨论,本题用的就是思路2.11.【2015高考新课标2,理21】(本题满分12分)设函数()证明:在单调递减,在单调递增;()若对于任意,都有,求的取值范围【答案】()详见解析;()【解析】()若,则当时,;当时,若,则当时,;当时,
39、所以,在单调递减,在单调递增()由()知,对任意的,在单调递减,在单调递增,故在处取得最小值所以对于任意,的充要条件是:即,设函数,则当时,;当时,故在单调递减,在单调递增又,故当时,当时,即式成立当时,由的单调性,即;当时,即综上,的取值范围是【考点定位】导数的综合应用【名师指点】()先求导函数,根据的范围讨论导函数在和的符号即可;()恒成立,等价于由是两个独立的变量,故可求研究的值域,由()可得最小值为,最大值可能是或,故只需,从而得关于的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解12.【2015高考江苏,19】(本小题满分16分) 已知函数. (1)试讨论的单调性; (2
40、)若(实数c是a与无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值.【答案】(1)当时, 在上单调递增;当时, 在,上单调递增,在上单调递减;当时, 在,上单调递增,在上单调递减(2)当时,时,时,所以函数在,上单调递增,在上单调递减(2)由(1)知,函数的两个极值为,则函数有三个零点等价于,从而或又,所以当时,或当时,设,因为函数有三个零点时,的取值范围恰好是,则在上,且在上均恒成立,从而,且,因此此时,因函数有三个零点,则有两个异于的不等实根,所以,且,解得综上【考点定位】利用导数求函数单调性、极值、函数零点【名师指点】求函数的单调区间的步骤:确定函数yf(x)的定义域
41、;求导数yf(x),令f(x)0,解此方程,求出在定义区间内的一切实根;把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;确定f(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.13.【2015高考山东,理21】设函数,其中. ()讨论函数极值点的个数,并说明理由; ()若成立,求的取值范围.【答案】(I):当 时
42、,函数在上有唯一极值点;当时,函数在上无极值点;当时,函数在上有两个极值点;(II)的取值范围是.(2)当 时, 当时, , 所以,函数在上单调递增无极值;当 时, 设方程的两根为 因为 所以, 由可得:所以,当时, ,函数单调递增;当时, ,函数单调递减;当时, ,函数单调递增;因此函数有两个极值点(3)当 时,由可得:当时, ,函数单调递增;当时, ,函数单调递减;因此函数有一个极值点综上:当 时,函数在上有唯一极值点;当时,函数在上无极值点;当时,函数在上有两个极值点;(II)由(I)知,(1)当时,函数在上单调递增,因为所以,时, ,符合题意; (2)当 时,由 ,得 所以,函数在上单
43、调递增,又,所以,时, ,符合题意;(3)当 时,由 ,可得所以 时,函数 单调递减;又所以,当时, 不符合题意;(4)当时,设 因为时, 当 时,此时, 不合题意.综上所述,的取值范围是 【考点定位】1、导数在研究函数性质中的应用;2、分类讨论的思想.【名师指点】本题考查了导数在研究函数性质中的应用,着重考查了分类讨论、数形结合、转化的思想方法,意在考查学生结合所学知识分析问题、解决问题的能力,其中最后一问所构造的函数体现了学生对不同函数增长模型的深刻理解.14.【2015高考重庆,理20】 设函数 (1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程; (2)若在上为减函数,求的取
44、值范围。【答案】(1),切线方程为;(2).当时,,故为减函数;当时,,故为增函数;当时,,故为减函数;由在上为减函数,知,解得故a的取值范围为.【考点定位】复合函数的导数,函数的极值,切线,单调性考查综合运用数学思想方法分析与解决问题的能力【名师指点】导数及其应用通常围绕四个点进行命题第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;本题涉及第一个点和第二个点,主要注意问题的转化,转化为不等式恒成立,转化为二次函数
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。