1、乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2 归纳小结公式的变式,准确灵活运用公式: 位置变化,(x+y)(-y+x)=x2-y2 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2 指数变化,(x2+y2)(x2-y2)=x4-y4 系数变化,(2a+b)(2a-b)=4a2-b2 换式变化,xy+(z+m)xy-(z+m)=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-
2、z2=x2-2xy+y2-z2 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4 逆用公式变化,(x-y+z)2-(x+y-z)2 =(x-y+z)+(x+y-z)(x-y+z)-(x+y-z) =2x(-2y+2z) =-4xy+4xz完全平方公式活用: 把公式本身适当变形后再用于解题。这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。例1已知,求的值。例2已知,求的值。解: =, 例3 已知,求的值。解:三、学习乘法公式应注意的问题 (一)、注意掌握
3、公式的特征,认清公式中的“两数”例1 计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b例2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b(解略)(二)、注意为使用公式创造条件例3 计算(2x+y-z+5)(2x-y+z+5)分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”
4、两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式例5 计算(2+1)(22+1)(24+1)(28+1)分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+22xy+22x(-3)+2y(-3)=4x2+y2+9+4xy-12x-6y(四)、注意公式的变换,灵活运用
5、变形公式 例7已知:x+2y=7,xy=6,求(x-2y)2的值例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便四、怎样熟练运用公式:熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点常见的几种变化是:1、位置变化 如(3x+5y)(5y3x)交换3x和5y的位置后即可用平方差公式计算了2、符号变化 如(2m7n)(2m7n)变为(2m+7n)(2m7n)后就可用平方差公式求解了(思考:不变或不这样变,可
6、以吗?)3、数字变化 如98102,992,912等分别变为(1002)(100+2),(1001)2,(90+1)2后就能够用乘法公式加以解答了4、系数变化 如(4m+)(2m)变为2(2m+)(2m)后即可用平方差公式进行计算了(四)、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便如计算(a2+1)2(a21)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便即原式=(a2+1)(a21)2=(a41)2=a82a4+1对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用如计算(1)(1)(1)(
7、1)(1),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题即原式=(1)(1+)(1)(1+)(1)(1+)= =有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a2+b2=(a+b)22ab,a2+b2=(ab)2+2ab等用这些变式解有关问题常能收到事半功倍之效如已知m+n=7,mn=18,求m2+n2,m2mn+ n2的值面对这样的问题就可用上述变式来解,即m2+n2=(m+n)22mn=722(18)=49+36=85,m2mn+ n2= (m+n)23mn=723(18)=103
8、下列各题,难不倒你吧?!1、若a+=5,求(1)a2+,(2)(a)2的值2、求(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)+1的末位数字(答案:1.(1)23;(2)212. 6 )五、乘法公式应用的五个层次乘法公式:(ab)(ab)=a2b2,(ab)=a22abb2,(ab)(a2abb2)=a3b3第一层次正用即根据所求式的特征,模仿公式进行直接、简单的套用例1计算 (2xy)(2xy)第二层次逆用,即将这些公式反过来进行逆向使用例2计算 第三层次活用 :根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式
9、例3化简:(21)(221)(241)(281)1分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“21”便可连续应用平方差公式,从而问题迎刃而解解原式=(21)(21)(221)(241)(281)1=(221)(221)(241)(281)1=216第四层次变用 :解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2b2=(ab)22ab,a3b3=(ab)33ab(ab)等,则求解十分简单、明快例5已知ab=9,ab=14,求2a22b2的值解: ab=9,ab=14,2a22b2=2(ab)22ab=2(92214)=106,第五层次综合后用 :将(ab)2=
10、a22abb2和(ab)2=a22abb2综合,可得 (ab)2(ab)2=2(a2b2);(ab)2(ab)2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷 例6计算:(2xyz5)(2xyz5)解:原式=(2x+y-z+5)+(2x-y+z+5)2-(2x+y-z+5)-(2x-y+z+5)2=(2x5)2(yz)2=4x220x25y22yzz2乘法公式的使用技巧:提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。例1、 运用乘法公式计算:(1)(-1+3x)(-1-3x); (2)(-2m-1)2改变顺序:运用交换律、结合律,调整因式或因式中各项的排列
11、顺序,可以使公式的特征更加明显.例2、 运用乘法公式计算:(1)()(); (2)(x-1/2)(x2+1/4)(x+1/2)逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a2-b2 = (a+b)(a-b),逆用积的乘方公式,得anbn=(ab)n,等等,在解题时常会收到事半功倍的效果。例3、 计算:(1)(x/2+5)2-(x/2-5)2 ; (2)(a-1/2)2(a2+1/4) 2(a+1/2)2合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算。计算:(
12、1)(x+y+1)(1-x-y); (2)(2x+y-z+5)(2x-y+z+5). 先提公因式,再用公式 例2. 计算: 简析:通过观察、比较,不难发现,两个多项式中的x的系数成倍数,y的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为,则可利用乘法公式。 三. 先分项,再用公式 例3. 计算: 简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x的系数相同,y的系数互为相反数,符合乘法公式。进而分析如何将常数进行变化。若将2分解成4与的和,将6分解成4与2的和,再分组,则可应用公式展开。 四. 先整体展开,再用公式 例4. 计算: 简析:乍看两个多项式无联系,但把第二个整式分成两部分,即,再将第一个整式与之相乘,利用平方差公式即可展开。 六. 先用公式,再展开 例6. 计算: 简析:第一个整式可表示为,由简单的变化,可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可。 如果我是山,就要站成一种尊严,让山花灿烂,山风拂面,让每一处角落都渗透梦语言,让我价值在太阳底下展现;如果我是水,就要流成一种磅礴,让小船远航,鱼儿欢畅,让每一股细流都一往无前,让我价值迎风吟唱
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。