1、高中数学必修3知识点总结第二章 统计2.1.1简单随机抽样1总体和样本: 在统计学中 , 把研究对象的全体叫做总体把每个研究对象叫做个体把总体中个体的总数叫做总体容量为了研究总体的有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本其中个体的个数称为样本容量2简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。3简单随机抽样常用
2、的方法: (1)抽签法;随机数表法;计算机模拟法;使用统计软件直接抽取。在简单随机抽样的样本容量设计中,主要考虑:总体变异情况;允许误差范围;概率保证程度。4抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。5随机数表法: 例:利用随机数表在所在的班级中抽取10位同学参加某项活动。2.1.2系统抽样1系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。K(抽样距离)=N(总体规模)/n
3、(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。2系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。2.1.3分层抽样1分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,
4、然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。两种方法:1先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。2分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。分层标准:(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。(3)以那些有明显
5、分层区分的变量作为分层变量。3分层的比例问题: (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。2.2.2用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这
6、种偏差是不可避免的。虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。4(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的最大值和最小值对标准差的影响,区间的应用;“去掉一个最高分,去掉一个最低分”中的科学道理2.3.2两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数 2最小二乘法3直线回归方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可
7、定量描述两个变量间依存的数量关系 (2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。 (3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。4应用直线回归的注意事项:(1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。数学必修3第二章统计微型试卷一、选择题:(本大题共10小题,每小题4分,共40分)1.某学校为了了解高一年级学生对教师教学的意见,打算从
8、高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( )A. 不全相等 B. 均不相等 C. 都相等 D. 无法确定2有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( )A.5,10,15,20 B.2,6,10,14 C.2,4,6,8 D.5,8,11,143某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙
9、地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是( )A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法4.频率分布直方图中,小长方形的面积等于( ) A.相应各组的频数 B.相应各组的频率 C.组数 D.组距5.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是 ( ) A. 20人 B. 40人 C. 70人 D. 80人6在下列各图中,每个图的两个变量具
10、有相关关系的图是( ) (1) (2) (3) (4)A(1)(2) B(1)(3) C(2)(4) D(2)(3)(3)当0时,设抛物线与x轴的两个交点为A、B,则这两个点之间的距离:7. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温/1813同心圆:圆心相同,半径不等的两个圆叫做同心圆。104-1点在圆外 dr.杯数24圆内接四边形的性质: 圆内接四边形的对角互补;34395163若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是( )在ABC中,C为直角,A、B、C所对的边分别为a、b、c,则有A. B. C. D. 一年级下册数学教学工作计划8根据某水文观测点的历
11、史统计数据,得到某条河流水位的频率分布直方图如下从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( )1、认真研读教材,搞好课堂教学研究工作,向课堂要质量。充分利用学生熟悉、感兴趣的和富有现实意义的素材吸引学生,让学生主动参与到各种数学活动中来,提高学习效率,激发学习兴趣,增强学习信心。提倡学法的多样性,关注学生的个人体验。A48米 B49米 C50米 D51米9由小到大排列的一组数据:,其中每个数据都小于,则样本,的中位数可以表示为( )3、学习并掌握100以内加减法(包括不进位、不退位与进位、退位)计算方法,并能正确计算;能根据具体问题,估计运算的结果;初步学会应用加
12、减法解决生活中简单问题,感受加减法与日常生活的密切联系。A. B. C. D.定义:在RtABC中,锐角A的对边与斜边的比叫做A的正弦,记作sinA,即;二、填空题:(本大题共5小题,每小题4分,共20分)1、第一单元“加与减(一)”。是学习20以内的退位减法,降低了一年级上学期孩子们学习数学的难度。退位减法是一个难点,学生掌握比较慢,但同时也是今后竖式减法的重点所在。所以在介绍的:数小棒、倒着数数、凑十法、看减法想加法、借助计数器这些方法中,孩子们喜欢用什么方法不统一要求,自己怎么快怎么算,但是要介绍这些方法。11管理人员从一池塘内捞出30条鱼,做上标记后放回池塘。10天后,又从池塘内捞出5
13、0条鱼,其中有标记的有2条。根据以上数据可以估计该池塘内共有 条鱼。12.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有_ _学生。8013 已知辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在的汽车大约有_辆.14已知与之间的一组数据为0123135-a7+a则与的回归直线方程必过定点_15. 已知样本的平均数是,标准差是,则 参考答案一、选择题: CABBA, DCCCB二、填空题:11、750 12、3700 13、80 14、 15、96文档已经阅读完毕,请返回上一页!
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。