ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:238.50KB ,
文档编号:5654930      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5654930.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(浙教版八年级数学上册第二章知识点注意点经典例题(DOC 14页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

浙教版八年级数学上册第二章知识点注意点经典例题(DOC 14页).doc

1、八年级上册第二章特殊三角形图形的轴对称轴对称图形 1. 如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴2. 有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴3. 折叠后重合的点是对应点,叫做对称点。轴对称 有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点两个图形关于直线对称也叫做轴对称图形轴对称的性质关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴

2、,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。轴对称与轴对称图形的区别线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合 等腰三角形+等腰三角形性质定理+等腰三角形判定定理等腰三角形1. 有两条边相等的三角形是等腰三角形。 2. 在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边两腰所夹的角叫做顶角,腰

3、与底边的夹角叫做底角等腰三角形的性质 性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)特别的:(1)等腰三角形是轴对称图形. (2)等腰三角形两腰上的中线、角平分线、高线对应相等.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形(2)有两边上的角平分线对应相等的三角形是等腰三角形(3)有两边上的中线对应相等的三角形是等腰三角形(4)有两边上的高线对应相等的三角形是等腰三角形 等边三角形 三条

4、边都相等的三角形叫做等边三角形,也叫做正三角形等边三角形的性质等边三角形的三个内角都相等,并且每一个内角都等于60等边三角形的判定方法(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60的等腰三角形是等边三角形 逆命题和逆定理逆命题和逆定理命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。 1. 命题一般由条件和结论组成,可以改为“如果”,“那么”的形式。 2. 正确的命题叫真命题,不正确的命题叫假命题。3. 基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。4定理:用逻辑的方法判断为正确并作为推理的根据的真命题。注

5、意:基本事实和定理一定是真命题。互逆命题:一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫互逆命题。如果把其中一个叫做原命题,那么另一个就叫做它的逆命题。互逆定理:如果一个定理的逆命题也是真命题,那么这两个定理叫做互逆定理。其中一个定理叫做另一个定理的互逆定理。注意:1.逆命题、互逆命题不一定是真命题,但逆定理、互逆定理一定是真命题。 2.所有的命题都有逆命题,但不是所有的定理都有逆定理。 直角三角形直角三角形有一个角是直角的三角形叫做直角三角形。直角三角的性质 1.直角三角形的两个锐角互余. 2. 直角三角形斜边上的中线等

6、于斜边的一半。 3. 在直角三角形中,30角所对的直角边等于斜边的一半. 直角三角的判定 1. 有一个角是直角的三角形是直角三角形 2. 有两个角互余的三角形是直角三角形3. 补充:如果三角形中一边上的中线等于这条边的一半,那么这个三角形是一个直角三角形。 勾股定理 勾股定理定理:一、 知识结构直角三角形的性质:勾股定理 勾股定理 应用:主要用于计算直角三角形的判别方法:若三角形的三边满足 则它是一个直角三角形.勾股定理的逆定理如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应

7、用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题2、 如何判定一个三角形是直角三角形(1) 先确定最大边(如c)(2) 验证与是否具有相等关系(3) 若=,则ABC是以C为直角的直角三角形;若, 则ABC不是直角三角形。3、 勾股数 满足=的三个正整数,称为勾股数,如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17; (5)7,24,25 (6)9, 40, 41 直角三角形全等的判定直角三角形的判定方法HL两Rt三角形一条斜边与一条直角边对应相等 则两三角

8、形全等角平分线的性质定理的逆定理角的内部,到角两边距离相等的点,在这个角的平分线上。补充知识:1、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分

9、出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。(3)摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90 CDAB (4)常用关系式由三角形面积公式可得:ABCD=ACBC三、重点解读1学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质;2等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,

10、后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形”;3直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便;4勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“”就认定是斜边。不要一看到直角三角形两边长为3和4,就认为另一边一定是5;5“HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效,当然,以前学过的“SSS”、“SAS”、“ASA”、“AAS”

11、等判定一般三角形全等的方法对于直角三角形全等的判定同样有效。切记! 两边及其中一边的对角对应相等的两个三角形不一定全等,也就是边边角,没有边边角定理。因此在证明全等时千万不要这样做。本章解题时用到的主要数学思想方法: 分类讨论思想(特别是在语言模糊的等腰三角形中)(留意后面的例题) 方程思想:主要用在折叠之后产生直角三角形时,运用勾股定理列方程;还有就是在等腰三角形中求角度,求边长(留意后面的例题) 等面积法四、典型例题(一)、角平分线+平行线1、在ABC中,三内角互不相等,BO平分ABC,CO平分ACB。过O点作EF, 使EFBC。(1)图中有几个等腰三角形(2)猜测线段BE、CF、EF有什

12、么数量关系,并说明理由。 2、在ABC中,ABC=ACB,BO平分ABC, CO平分ACB,过O点作EF,使EFBC,且EBO=30。若BE=5,ABC的周长为_。(二)、角平分线+垂线3、如图:AB=AC,1=2,AECD于F交BC于点E,求证:AB=CE。4、如图,ABC是等腰直角三角形,其中A=90,BD平分ABC交AC于点D,CEBD交BD的延长线于点E,求证:BD=2CE (三)、直角三角形的一个锐角平分线+斜边上的高线F5、如图,在ABC中,ACB=90,AE平分CAB,CDAB于D,它们交于点F,CFE是等腰三角形吗试说明理由.(四)、等边三角形的几个基本图形:6、等边三角形AB

13、C中,BD=CE,连接AD、BE交于点F。AFE=_。7、如图点A、C、E在同一直线上,ABC和CDE都是等边三角形,M、N分别是AD、BE的中点。说明: CMN是等边三角形。8、已知等边ABC和点P,设点P到ABC三边AB、AC、BC的距离分别是h1,h2,h3,ABC的高为h,若点P在一边BC上(图1),此时h3=0,可得结论h1+h2+h3=h,请你探索以下问题:当点P在ABC内(图2)和点P在ABC外(图3)这两种情况时,h1、h2、h3与h之间有怎样的关系,请写出你的猜想,并简要说明理由(五)、等腰直角三角形的几个基本应用9、在ABC中,ACB=90,AC=BC,直线MN经过点C,且

14、ADMN于D,BEM于E。(1)当直线MN绕点C旋转到图1位置时,说明ADCCEB的理由;(2)当直线MN绕点C旋转到图2位置时,说明DE=ADBE的理由;ABCDEMN图2ABCDMN图3(3)当直线MN绕点C旋转到图3位置时,试问DE、 AD、BE有怎样的等量关系请写出这个等量关系,并说明理由.ABCDEMN图110、如图,在直角ABC中,C=90,AC=BC,D,E分别在BC和AC上,且BD=CE,M是AB的中点。求证:MDE是等腰直角三角形。(六)、勾股定理、勾股定理的逆定理、勾股定理与方程11、观察下面表格中所给出的三个数a,b,c,其中a,b,c为正整数,且abc (1):试找出他

15、们的共同点,并证明你的结论,3,4,53+4=55,12,135+12=137,24,257+24=259,40,419+40=41.21,b,c21+b=c (2):当a=21时,求b,c的值 12、如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作PBQ=60,且BQ=BP,连结CQ。(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论(2)若PA:PB:PC=3:4:5,连结PQ,试判断PQC的形状,并说明理由ABCD13、等腰三角形底边上的高为8,周长为32,求这个三角形的面积分析:对于没有图形的大题(指需要过程的题目),最好自己画图,与人方便,与己方便。解:设

16、这个等腰三角形为ABC,高为AD,设BD为x,则AB为(16-x), 由勾股定理得:x2+82=(16-x)2即x2+64=256-32x+x2 x=6 SABC=BCAD/2=2 6 8/2=4814、矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在DC边上的点G处,求BE的长。EGCDBA(七)、需要分类讨论的(主要是由语言的模糊造成要讨论)有一个角等于50,另一个角等于_的三角形是等腰三角形。有一个直角三角形的两条直角边为3,4,则第三条边长为_ 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形周长分成15和6两部

17、分,求这个三角形的腰长及底边长。(八)作图题如图,求作一点P,使PC=PD,并且使点P到AOB两边的距离相等,并说明你的理由作图题的基本要求:结论不能丢。格式:什么什么即为所求。【考点精练】一、基础训练1如图1,在ABC中,AB=AC,A=50,BD为ABC的平分线,则BDC=_ (1) (2) (3)2如图2,是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是_3如图3,一个顶角为40的等腰三角形纸片,剪去顶角后,得到一个四边形,则1+2=_度4如图4,在等腰直角ABC中,B=90,将ABC绕顶点A逆时针方向旋转60后得到ABC,则BAC等于_ (4) (5

18、) 5如图5,沿AC方向开山修渠,为了加快施工进度,要在小山的另一边同时施工从AC上的一点B取ABD=135,BD=520米,D=45,如果要使A、C、E成一直线,那么开挖点E离D的距离约为_米(精确到1米)6等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_7如图7,在ABC中,AB=AC,BAD=20,且AE=AD,则CDE=_ (7) (8) (9)8如图8,在等腰三角形ABC中,AB=AC,A=44,CDAB于D,则DCB等于( )A44 B68 C46 D229如图9,要

19、在离地面5m处引拉线固定电线杆,使拉线和地面成60角,若考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m的四种备用拉线材料中,拉线AC最好选用( )AL1 BL2 CL3 DL410如图10,在ABC中,AB=AC,D为AC边上一点,且BD=BC=AD则A等于( )A30 B36 C45 D72 (10) (11)11同学们都玩过跷跷板的游戏如图11所示,是一跷跷板的示意图,立柱OC与地面垂直,OA=OB当跷跷板的一头A着地时,OAC=25,则当跷跷板的另一头B着地时,AOA等于( )A25 B50 C60 D13012、直角三角形的两

20、条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( ) A. ab=h2 B. a+b=2h C. += D. += 如图所示,在ABC中,AB=6,AC=9,ADBC于点D,M为AD上任一点,则MC2-MB2等于 二、能力提升13如图,已知等腰三角形一腰上的中线把三角形周长分为12cm和15cm两部分,求它的底边长14(计算型说理题)已知如图ABC是等边三角形,BD是AC边上的高,延长BC到E使CE=CD试判断DB与DE之间的大小关系,并说明理由。15如图,ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列三个条件:EBO=DCO;BEO=CDO;BE=CD(1)上述三个条件中,哪两个条件可判定ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情况,证明ABC是等腰三角形三、应用与探究16如图,ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点 (1)若AD=BE=CF,问DEF是等边三角形吗试证明你的结论 (2)若DEF是等边三角形,问AD=BE=CF成立吗试证明你的结论

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|