1、1.4 1.4 二次函数的应用二次函数的应用 如图,船位于船正东如图,船位于船正东26km处,现在,两船处,现在,两船同时出发,同时出发,A船以船以12km/h的速度朝正北方向行驶,的速度朝正北方向行驶,B船船以以5km/h 的速度朝正西方向行驶,何时两船相距最近?的速度朝正西方向行驶,何时两船相距最近?最近距离是多少?最近距离是多少?576)1013(676260169)12()526(222222 tttttAABABA新知:距离新知:距离例例3 某超市销售一种饮料,每瓶进价为某超市销售一种饮料,每瓶进价为 9 元元.经市场调经市场调查表明,当售价在查表明,当售价在 10 元到元到 14
2、元之间(含元之间(含 10 元,元,14 元)元)浮动时,每瓶售价每增加浮动时,每瓶售价每增加 0.5 元,日均销售量减少元,日均销售量减少 40 瓶;当售价为每瓶瓶;当售价为每瓶 12 元时,日均销售量为元时,日均销售量为 400 瓶瓶.问销问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润每瓶售价每瓶进价)最大?最大日均毛利润利润每瓶售价每瓶进价)最大?最大日均毛利润为多少元?为多少元?新知:销量新知:销量 某商品现在的售价为每件某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件,市场调查反件,市场调查反映:每涨价映:每涨价
3、1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每星期可多卖出元,每星期可多卖出18件,已知商品的进价为每件件,已知商品的进价为每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?自变量?哪些量随之发生了变化?某商品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨价件,市场调查反映:每涨价1元,每星期少
4、卖出元,每星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系式。涨价涨价x元时则每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商品需付元,买进商品需付 元因此,所得利润
5、为因此,所得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即6000100102xxy(0X30)6000100102xxy(0X30)625060005100510522最大值时,yabx可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公式可数有最大值。由公式可以求出顶点的横坐
6、标以求出顶点的横坐标.元x元y625060005300所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元在降价的情况下,最大利润是多少?请你参考在降价的情况下,最大利润是多少?请你参考(1)的过的过程得出答案。程得出答案。解:设降价解:设降价x元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖18x件,实件,实际卖出(际卖出(300+18x)件,销售额为件,销售额为(60-x)(300+18x)元,买元,买进商品需付进商品需付40(300-10 x)元,因此,得利润元,因此,得利润60506000356035183522最大时,当yabx答:
7、定价为答:定价为 元时,利润最大,最大利润为元时,利润最大,最大利润为6050元元 3158由由(1)(2)的讨论及现在的销售的讨论及现在的销售情况情况,你知道应该如何定价能你知道应该如何定价能使利润最大了吗使利润最大了吗?60006018183004018300602xxxxxy(0 x20)某大棚内种植西红柿,经过试验,其单位面积的产某大棚内种植西红柿,经过试验,其单位面积的产量与这个单位面积种植的株数构成一种函数关系量与这个单位面积种植的株数构成一种函数关系.每每平方米种植平方米种植 4 株时,平均单株产量为株时,平均单株产量为 2kg;以同样的;以同样的栽培条件,每平方米种植的株数每增
8、加栽培条件,每平方米种植的株数每增加 1 株,单株株,单株产量减少产量减少kg.问问:每平方米种植多少株时,能获得最每平方米种植多少株时,能获得最大的产量?最大产量为多少?大的产量?最大产量为多少?9)6(41)442(2 xxxy 有一经销商,按市场价收购了一种活蟹有一经销商,按市场价收购了一种活蟹1000千克,千克,放养在塘内,此时市场价为每千克放养在塘内,此时市场价为每千克30元。据测算,此后元。据测算,此后每千克活蟹的市场价,每天可上升每千克活蟹的市场价,每天可上升1元,但是,放养一天元,但是,放养一天需各种费用支出需各种费用支出400元,且平均每天还有元,且平均每天还有10千克蟹死去
9、,千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克假定死蟹均于当天全部售出,售价都是每千克20元(放元(放养期间蟹的重量不变)养期间蟹的重量不变).设设x天后每千克活蟹市场价为天后每千克活蟹市场价为P元,写出元,写出P关于关于x的函数的函数关系式关系式.如果放养如果放养x天将活蟹一次性出售,并记天将活蟹一次性出售,并记1000千克蟹的千克蟹的销售总额为销售总额为Q元,写出元,写出Q关于关于x的函数关系式。的函数关系式。该经销商将这批蟹放养多少天后出售,可获最大利润,该经销商将这批蟹放养多少天后出售,可获最大利润,(利润(利润=销售总额销售总额-收购成本收购成本-费用)?最大利润是多少?费用
10、)?最大利润是多少?解:解:由题意知由题意知:P=30+x.由题意知:死蟹的销售额为由题意知:死蟹的销售额为200 x元,元,活蟹的销售额为(活蟹的销售额为(30+x)()(1000-10 x)元。元。Q=(30+x)(1000-10 x)+200 x=10 x2+900 x+30000设总利润为设总利润为W=Q-30000-400 x=-10 x2+500 x =-10(x-25)2+6250当当x=25时,总利润最大,最大利润为时,总利润最大,最大利润为6250元。元。x(元元)152030y(件件)252010 若日销售量若日销售量 y 是销售价是销售价 x 的一次函数。的一次函数。(1
11、)求出日销售量)求出日销售量 y(件)与销售价(件)与销售价 x(元)的函元)的函数关系式;(数关系式;(6分)分)(2)要使每日的销售利润)要使每日的销售利润最大最大,每件产品的销售价,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(应定为多少元?此时每日销售利润是多少元?(6分)分)某产品每件成本某产品每件成本10元,试销阶段每件产品的销售价元,试销阶段每件产品的销售价 x(元)与产品的日销售量(元)与产品的日销售量 y(件)之间的关系如下表:(件)之间的关系如下表:(2)设每件产品的销售价应定为)设每件产品的销售价应定为 x 元,所获销售利润元,所获销售利润为为 w 元。则元。
12、则 产品的销售价应定为产品的销售价应定为25元,此时每日获得最大销售利元,此时每日获得最大销售利润为润为225元。元。15252020kbkb则则解得:解得:k=1,b40。1分5分6分7分10分12分(1)设此一次函数解析式为)设此一次函数解析式为 。bkxy22525 40050401022xxxxxw所以一次函数解析为所以一次函数解析为 。40 xy(3)销售量可以表示为)销售量可以表示为(1)销售价可以表示为)销售价可以表示为(50+x)元)元 个(2)一个商品所获利)一个商品所获利可以表示为可以表示为(50+x-40)元)元(4)共获利)共获利可以表示为可以表示为解解:=-10(x-20)2 +9000实际问题抽象抽象转化转化数学问题数学问题运用运用数学知识数学知识问题的解问题的解返回解释返回解释检验检验
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。