ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:656.01KB ,
文档编号:5687024      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5687024.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(ziliao2023)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(函数的极值及其求法课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

函数的极值及其求法课件.ppt

1、一、函数极值的定义oxyab)(xfy 1x2x3x4x5x6xoxyoxy0 x0 x 函数的极值及其求法函数的极值及其求法下页上页首页.)()(,)()(,;)()(,)()(,),(,),()(000000000的一个极小值的一个极小值是函数是函数就称就称均成立均成立外外除了点除了点任何点任何点对于这邻域内的对于这邻域内的的一个邻域的一个邻域如果存在着点如果存在着点的一个极大值的一个极大值是函数是函数就称就称均成立均成立外外除了点除了点任何点任何点对于这邻域内的对于这邻域内的的一个邻域的一个邻域如果存在着点如果存在着点内的一个点内的一个点是是内有定义内有定义在区间在区间设函数设函数xfx

2、fxfxfxxxxfxfxfxfxxxbaxbaxf 定义定义函数的极大值与极小值统称为函数的极大值与极小值统称为极值极值,使函数取得使函数取得极值的点称为极值的点称为极值点极值点.下页上页首页 设设)(xf在在点点0 x处处具具有有导导数数,且且在在0 x处处取取得得极极值值,那那末末必必定定0)(0 xf.定理定理1 1(必要条件必要条件)定义定义.)()0)(的驻点的驻点做函数做函数叫叫的实根的实根即方程即方程使导数为零的点使导数为零的点xfxf 注意注意:.,)(是极值点是极值点但函数的驻点却不一定但函数的驻点却不一定点点的极值点必定是它的驻的极值点必定是它的驻可导函数可导函数xf例如

3、例如,3xy ,00 xy.0不不是是极极值值点点但但 x下页上页首页(1)(1)如果如果),(00 xxx 有有;0)(xf而而),(00 xxx,有有0)(xf,则,则)(xf在在0 x处取得极大值处取得极大值.(2)(2)如果如果),(00 xxx 有有;0)(xf而而),(00 xxx 有有0)(xf,则,则)(xf在在0 x处取得极小值处取得极小值.(3)(3)如果当如果当),(00 xxx 及及),(00 xxx时时,)(xf符号相同符号相同,则则)(xf在在0 x处无极值处无极值.(第一充分条件第一充分条件)xyoxyo0 x0 x (是极值点情形是极值点情形)下页上页首页xyo

4、xyo0 x0 x 求极值的步骤求极值的步骤:);()1(xf 求导数求导数;0)()2(的根的根求驻点,即方程求驻点,即方程 xf;,)()3(判断极值点判断极值点在驻点左右的正负号在驻点左右的正负号检查检查xf .)4(求极值求极值(不是极值点情形不是极值点情形)下页上页首页例例1 1解解963)(2 xxxf,令令0)(xf.3,121 xx得驻点得驻点列表讨论列表讨论x)1,(),3()3,1(1 3)(xf )(xf 00 极大值极大值极小值极小值)3(f极小值极小值.22 )1(f极大值极大值,10)3)(1(3 xx下页上页首页.593)(23的极值的极值求出函数求出函数 xxx

5、xf593)(23 xxxxfMm图形如下图形如下下页上页首页 设设)(xf在在0 x处具有二阶导数处具有二阶导数,且且0)(0 xf,0)(0 xf,那末那末(1)(1)当当0)(0 xf时时,函数函数)(xf在在0 x处取得极大值处取得极大值;(2)(2)当当0)(0 xf时时,函数函数)(xf在在0 x处取得极小值处取得极小值.第二充分条件:第二充分条件:证证)1(xxfxxfxfx )()(lim)(0000,0 异号,异号,与与故故xxfxxf )()(00时,时,当当0 x)()(00 xfxxf 有有,0 时,时,当当0 x)()(00 xfxxf 有有,0 所以所以,函数函数)

6、(xf在在0 x处取得极大值处取得极大值 同理可证同理可证(2).下页上页首页例例2 2解解.20243)(23的极值的极值求出函数求出函数 xxxxf2463)(2 xxxf,令令0)(xf.2,421 xx得驻点得驻点)2)(4(3 xx,66)(xxf )4(f,018 )4(f故极大值故极大值,60 )2(f,018 )2(f故极小值故极小值.48 20243)(23 xxxxf图形如下图形如下下页上页首页Mm注意注意:.2,)(,0)(00仍用定理仍用定理处不一定取极值处不一定取极值在点在点时时xxfxf 下页上页首页注意注意:函数的不可导点函数的不可导点,也可能是函数的极值点也可能

7、是函数的极值点.例例3.求f(x)=32x的极值解解:3313232)(xxxf)0(xx 0时,f(x)0时,f(x)0故得 极小值f(0)=032xy xy0下页上页首页oxyoxybaoxyabab.,)(,)(在在上的最大值与最小值存上的最大值与最小值存在在为零的点,则为零的点,则并且至多有有限个导数并且至多有有限个导数处可导,处可导,上连续,除个别点外处上连续,除个别点外处在在若函数若函数baxfbaxf下页上页首页步骤步骤:1.求驻点和不可导点求驻点和不可导点;2.求区间端点及驻点和不可导点的函数值求区间端点及驻点和不可导点的函数值,比比较大小较大小,那个大那个就是最大值那个大那个

8、就是最大值,那个小那个就那个小那个就是最小值是最小值;注意注意:如果区间内只有一个极值如果区间内只有一个极值,则这个极值就则这个极值就是最值是最值.(最大值或最小值最大值或最小值)下页上页首页例例4 4解解)1)(2(6)(xxxf.4,314123223上的最大值与最小值上的最大值与最小值的在的在求函数求函数 xxxy得得解方程解方程,0)(xf.1,221 xx计算计算 )3(f;23 )2(f;34)1(f;7;142)4(f下页上页首页,最大值最大值142)4(f比较得比较得.7)1(f最小值最小值14123223 xxxy下页上页首页例例5.求f(x)=x48x2+2在1,3上的最大

9、值和最小值.解解:f(x)=4x3 16x=4x(x2)(x+2)令 f(x)=0 得驻点 x1=0,x2=2,x3=2(舍去)计算 f(0)=2,f(2)=14f(1)=5,f(3)=11所以最小值f(2)=14,最大值f(3)=11下页上页首页例例6.求 f(x)=x2ex的最大值和最小值.解解:f(x)在定义域(,)上连续可导且 f (x)=x(2x)ex令 f (x)=0得驻点 x=0,x=2 有 f(0)=0,f(2)=4e2且,)(limxfx,0)(limxfx故 f(x)在定义域内有最小值 f(0)=0,无最大值.y=x2ex02下页上页首页点击图片任意处播放点击图片任意处播放

10、暂停暂停例例7 7形面积最大所围成的三角及线处的切线与直使曲线在该点上求一点,曲边成一个曲边三角形,在围及抛物线,由直线808022xyxyxyxy下页上页首页解解如图如图,),(00yxP设设所所求求切切点点为为为为则切线则切线PT),(2000 xxxyy ,200 xy ),0,21(0 xA)16,8(200 xxB),0,8(CTxyoPABC)16)(218(212000 xxxSABC )80(0 x下页上页首页,0)1616643(41020 xxS令令解得解得).(16,31600舍去舍去 xx8)316(s.0.274096)316(为极大值为极大值 s.274096)31

11、6(最大者最大者为所有三角形中面积的为所有三角形中面积的故故 s下页上页首页实际问题求最值应注意实际问题求最值应注意:(1)建立目标函数建立目标函数;(2)求最值求最值;小)值小)值值即为所求的最(或最值即为所求的最(或最点,则该点的函数点,则该点的函数若目标函数只有唯一驻若目标函数只有唯一驻下页上页首页极值是函数的局部性概念极值是函数的局部性概念:极大值可能小于极小极大值可能小于极小值值,极小值可能大于极大值极小值可能大于极大值.驻点和不可导点统称为驻点和不可导点统称为临界点临界点.函数的极值必在函数的极值必在临界点临界点取得取得.判别法判别法第一充分条件第一充分条件;第二充分条件第二充分条

12、件;(注意使用条件注意使用条件)下页上页首页注意最值与极值的区别注意最值与极值的区别.最值是整体概念而极值是局部概念最值是整体概念而极值是局部概念.实际问题求最值的步骤实际问题求最值的步骤.下页上页首页思考题思考题下命题正确吗?下命题正确吗?如如果果0 x为为)(xf的的极极小小值值点点,那那么么必必存存在在0 x的的某某邻邻域域,在在此此邻邻域域内内,)(xf在在0 x的的左左侧侧下下降降,而而在在0 x的的右右侧侧上上升升.下页上页首页思考题解答思考题解答不正确不正确例例 0,20),1sin2(2)(2xxxxxf当当0 x时,时,)0()(fxf)1sin2(2xx 0 于是于是0 x

13、为为)(xf的极小值点的极小值点下页上页首页当当0 x时,时,当当0 x时时,,0)1sin2(2 xxx1cos在在1和和1之间振荡之间振荡因因而而)(xf在在0 x的的两两侧侧都都不不单单调调.故命题不成立故命题不成立xxxxf1cos)1sin2(2)(下页上页首页一、一、填空题:填空题:1 1、极值反映的是函数的极值反映的是函数的 _性质性质.2 2、若函数若函数)(xfy 在在0 xx 可导,则它在点可导,则它在点0 x处到处到 得极值的必要条件中为得极值的必要条件中为_._.3 3、函 数函 数32)1(2 xy的 极 值 点 为的 极 值 点 为 _;31)1(23 xy的极值为

14、的极值为_._.4 4、已知函数已知函数 0,10,)(3xxxxxfx当当_ x时,时,为极为极_ y小值;当小值;当时时_ x,为极为极_ y大值大值.练练 习习 题题下页上页首页二、求下列函数的极值:二、求下列函数的极值:1 1、xeyxcos;2 2、xxy1;3 3、方程方程02 yeyx所确定的函数所确定的函数)(xfy ;4 4、0,00,21xxeyx.三、三、证明题:证明题:1 1、如果如果dcxbxaxy 23满足条满足条032 acb,则函数无极值则函数无极值.2 2、设设)(xf是是有有连连续续的的二二阶阶导导数数的的偶偶函函数数0)(xf,则则0 x为为)(xf的的极极值值点点.下页上页首页一、一、1 1、局部;、局部;2 2、0)(0 xf;3 3、(1,2),(1,2),无;无;4 4、1,0,)1(,13eee;二、二、1 1、极大值、极大值 keky2422)24(,极小值极小值 ),2,1,0(22)12(4()12(4 kekyk;2 2、极大值、极大值eeey1)(;3 3、极小值、极小值1)0(y;4 4、极小值、极小值0)0(y.练习题答案练习题答案下页上页首页

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|