1、15153 3分式方程分式方程(2(2课时课时)第第2课时分式方程的应用课时分式方程的应用1进一步熟练地解可化为一元一次方程的分式方程2使学生能较熟练地列可化为一元一次方程的分式方程解应用题重点在不同的实际问题中审明题意设未知数,列分式方程,解决实际问题难点在不同的实际问题中,设未知数列分式方程二、探究新知例1某校招生录取时,为了防止数据输入出错,2 640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致已知甲的输入速度是乙的2倍,结果甲比乙少用了2小时输完问这两个操作员每分钟各能输入多少名学生的成绩?分析(1)如何设元?(2)题目中有几个相等关系?(
2、3)怎样列方程?本题有两个相等关系:(1)甲速2乙速(2)甲时120乙时其中(1)用来设,(2)用来列方程概括列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)例2A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5 2,求两车的速度分析:这里的字母v,s表示已知数据,设提速前列车的平均速度为x km/h,那么提速前列车行驶s km所用时间为_h,提速后列
3、车的平均速度为_km/h,提速后列车运行(s50)km所用时间为_h.本题是列含字母系数的分式方程,解这个方程并且检验是难点,在解题过程中注意把s,v当作已知数三、课堂小结1列分式方程解应用题的一般步骤:(1)审:审清题意;(2)设:设未知数(要有单位);(3)列:根据题目中的数量关系找出相等关系,列出方程;(4)解:解方程,并验根,还要看方程的解是否符合题意;(5)答:写出答案(要有单位)2几种基本题型:(1)行程问题;(2)数字问题;(3)工程问题;(4)顺水逆水问题;(5)利润问题四、布置作业教材第154155页习题15.3第3,4,5题本节课结合具体的数学内容采用“问题情境建立数学模型
4、解释应用与拓展”的模式展开,选择有现实意义的,对学生具有一定挑战性的内容,使学生在自主探索和合作交流的过程中建立数学模型,让学生能够自觉的用数学的眼光观察世界,提高发现问题、分析问题、解决问题的能力14142 2乘法公式乘法公式142.2完全平方公式完全平方公式1完全平方公式的推导及其应用2完全平方公式的几何解释重点完全平方公式的推导过程、结构特点、几何解释,灵活应用难点理解完全平方公式的结构特征,并能灵活应用公式进行计算一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述
5、所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p1)2(p1)(p1)_;(2)(p1)2(p1)(p1)_;(3)(m2)2_;(4)(m2)2_通过几个这样的运算例子,让学生观察算式与结果间的结构特征归纳:公式(ab)2a22abb2(ab)2a22abb2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍这两个公式叫做(乘法的)完全平方公式教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因还可以引导学生将(ab)2的结果用(ab)2来解释:(ab)2a(b)2a22a(b)(b)2
6、a22abb2.2教材例4:运用完全平方公式计算:(1)1022(1002)21002210022210 000400410 404;(2)992(1001)21002210011210 00020019 801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性四、再探新知1现有下图所示三种规格的卡片各若干张,请你根据二次三项式a22abb2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:2你能根据下图说明(ab)2a22abb2吗?第1小题由小组合作共同完成拼图
7、游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(ab)2a2b22b(ab)a22abb2.六、巩固拓展教材例5:运用乘法公式计算:(1)(x2y3)(x2y3);(2)(abc)2.解:(1)(x2y3)(x2y3)x(2y3)x(2y3)x2(2y3)2x2(4y212y9)x24y212y9;(2)(abc)2(ab)c2(ab)22(ab)cc2a22abb22ac2bcc2a2b2c22ab2ac2bc.讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题然后给出例5题目,让学生思考选择哪个公式第(1)小
8、题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中2y3(2y3),故应运用平方差公式第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力教师要抓住这个契机,适当对学生进行学法指导对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。