1、17.2 勾股定理的逆定理第十七章 勾股定理导入新课讲授新课当堂练习课堂小结第2课时 勾股定理的逆定理的应用学习目标1.灵活应用勾股定理及其逆定理解决实际问题.(重点)2.将实际问题转化成用勾股定理的逆定理解决的数学问 题.(难点)导入新课导入新课问题 前面的学习让我们对勾股定理及其逆定理的知识有了一定的认识,你能说出它们的内容吗?回顾与思考 a2+b2=c2(a,b为直角边,c斜边)RtABC,C是直角勾股定理勾股定理的逆定理a2+b2=c2(a,b为较短边,c为最长边)RtABC,且C是直角.(2)等腰 ABC中,AB=AC=10cm,BC=12cm,则BC 边上的高是 cm.8(1)已知
2、 ABC中,BC=41,AC=40,AB=9,则此三角形 为 三角形,是最大角.直角A快速填一填:思考 前面我们已经学会了用勾股定理解决生活中的很多问题,那么勾股定理的逆定理解决哪些实际问题呢?你能举举例吗?在军事和航海上经常要确定方向和位置,从而常需要使用一些数学知识和方法,其中勾股定理的逆定理经常会被用到,这节课让我们一起来学习吧.讲授新课讲授新课12勾股定理的逆定理的应用一例1 如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距3
3、0海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NEP QR问题1 认真审题,弄清已知是什么?要解决的问题是什么?12NEP QR161.5=24121.5=1830“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如图.问题2 由于我们现在所能得到的都是线段长,要求角,由此你联想到了什么?实质是要求出两艘船航向所成角.勾股定理逆定理解:根据题意得PQ=161.5=24(海里),PR=121.5=18(海里),QR=30海里.242+182=302,即PQ2+PR2=QR2,QPR=90.由“远航”号沿东北方向航行可知1=45.2=45,即“海天”号沿西北方向
4、航行.NEP QR12 解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.归纳【变式题】如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,便立即通知在PQ上B处巡逻的103号艇注意其动向,经检测,AC=10海里,BC=8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?东北PABCQD 分析:根据勾股定理的逆定可得ABC是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD,然后再利用勾股定理便可求CD.
5、解:AC=10,AB=6,BC=8,AC2=AB2+BC2,即ABC是直角三角形.设PQ与AC相交于点D,根据三角形面积公式有 BCAB=ACBD,即68=10BD,解得BD=在RtBCD中,22222486.4().5CDBCBD海里又该船只的速度为12.8海里/时,6.412.8=0.5(小时)=30(分钟),需要30分钟进入我领海,即最早晚上10时58分进入我领海.东北PABCQD24.51212例2 一个零件的形状如图所示,按规定这个零件中A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?DABC4351312DABC图图在BCD中,BCD 是直角三角形
6、,DBC是直角.因此,这个零件符合要求.解:在ABD中,ABD 是直角三角形,A是直角.DABC4351312图 1.A、B、C三地的两两距离如图所示,A地在B地的正东方向,C在B地的什么方向?ABC5cm12cm13cm解:BC2+AB2=52+122=169,AC2=132=169,BC2+AB2=AC2,即ABC是直角三角形,B=90.答:C在B地的正北方向练一练2.如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现ABDC8m,ADBC6m,AC9m,请你运用所学知识帮他检验一下挖的是否合格?解:ABDC8m,ADBC6m,AB2BC28262643610
7、0.又AC29281,AB2BC2AC2,ABC90,该农民挖的不合格例3 如图,四边形ABCD中,B90,AB3,BC4,CD12,AD13,求四边形ABCD的面积.解析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断ACD是直角三角形.ADBC341312勾股定理及其逆定理的综合应用二解:连接AC.ADBC341312在RtABC中,在ACD中,AC2+CD2=52+122=169=AD2,ACD是直角三角形,且ACD=90.S四边形ABCD=SRtABC+SRtACD=6+30=36.2222345,ACABBC 四边形问题对角线是常用的辅助线,
8、它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.归纳【变式题1】如图,四边形ABCD中,ABAD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.解:连接BD.在RtABD中,由勾股定理得 BD2=AB2+AD2,BD=5m.又 CD=12cm,BC=13cm,BC2=CD2+BD2,BDC是直角三角形.S四边形ABCD=SRtBCDSRtABD=BDCD ABAD =(51234)=24(cm2)121212CBAD【变式题2】如图,在四边形ABCD中,ACDC,ADC的面积为30 c
9、m2,DC12 cm,AB3cm,BC4cm,求ABC的面积.解:SACD=30 cm2,DC12 cm.AC=5 cm.又ABC是直角三角形,B是直角.DCBA例4 如图,ABC中,AB=AC,D是AC边上的一点,CD=1,BC 5,BD=2(1)求证:BCD是直角三角形;(2)求ABC的面积(1)证明:CD=1,BC 5,BD=2,CD2+BD2=BC2,BDC是直角三角形;(2)解:设腰长AB=AC=x,在RtADB中,AB2=AD2+BD2,x2=(x-1)2+22,解得5.2x 11552.2222ABCSAC BD用到了方程的思想1.医院、公园和超市的平面示意图如图所示,超市在医院
10、的南偏东25的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东 的方向.东医院公园超市北65当堂练习当堂练习2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中摆放方法正确的是 ()A.B.C.D.D3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km此时,A,B两组行进的方向成直角吗?请说明理由.解:出发2小时,A组行了122=24(km),B组行了92=18(km),又A,B
11、两组相距30km,且有242+182=302,A,B两组行进的方向成直角4.如图,在ABC中,AB=17,BC=16,BC边上的中线AD=15,试说明:AB=AC.解:BC=16,AD是BC边上的中线,BD=CD=BC=8.在ABD中,AD2+BD2=152+82=172=AB2,ABD是直角三角形,即ADB=90ADC是直角三角形.在RtADC中,AB=AC.12222215817ACADCD,5.在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40的方向向目标A的前进,同时,另一艘搜救艇也从港口O出发,
12、以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?解:根据题意得OA=161.5=24(海里),OB=121.5=18(海里),OB2+OA2=242+182=900,AB2=302=900,OB2+OA2=AB2,AOB=90.第一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40的方向向目标A的前进,BOD=50,即第二艘搜救艇的航行方向是北偏西50度解:设AB为3xcm,BC为4xcm,AC为5xcm,周长为36cm,即AB+BC+AC=36cm,3x+4x+5x=36,解得x=3.AB=
13、9cm,BC=12cm,AC=15cm.AB2+BC2=AC2,ABC是直角三角形,过3秒时,BP=9-32=3(cm),BQ=12-13=9(cm),在RtPBQ中,由勾股定理得6.如图,在ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长22393 10(cm).PQ 课堂小结课堂小结勾股定理的逆定理的应用应 用航海问题方法认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定 理 来 解 决 问 题与勾股定理结合解决不规则图形等问题导入新课讲授新课
14、当堂练习课堂小结20.2 数据的波动程度第二十章 数据的分析第2课时 根据方差做决策情境引入学习目标1.能熟练计算一组数据的方差;(重点)2.能用样本的方差估计总体的方差及根据方差做决策.(难点)导入新课导入新课方差的计算公式,请举例说明方差的意义方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况2222121=-+-+-=-+-+-nsx xxxxxn()()()方差越大,数据的波动越大;方差越小,数据的波动越小复习引入讲授新课讲授新课根据方差做决策每个鸡腿的质量;鸡腿质量的稳定性抽样调查 问题1 某快餐公司的香辣鸡腿很受消费者欢迎现有甲、乙两家农副产品加工厂到快
15、餐公司推销鸡腿,两家鸡腿的价格相同,品质相近快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿 (1)可通过哪些统计量来关注鸡腿的质量?(2)如何获取数据?例1 在问题1中,检查人员从两家的鸡腿中各随机抽取15 个,记录它们的质量(单位:g)如下表所示根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?解:样本数据的平均数分别是:74 7472 737515x甲+=75 7371 757515x乙+=样本平均数相同,估计这批鸡腿的平均质量相近甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73乙 75 73 79 72 76 71 73 72 78
16、74 77 78 80 71 752222274 7574 7572 7573 75315s甲()()()()-+-+-+-+-+-+-=2222275 7573 7577575 75815s乙()()()()-+-+1 1-=解:样本数据的方差分别是:由可知,两家加工厂的鸡腿质量大致相等;由 可知,甲加工厂的鸡腿质量更稳定,大小更均匀因此,快餐公司应该选购甲加工厂生产的鸡腿xx=甲乙2s甲2s乙例2 在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?212021191920
17、172420171923甲乙分析:通过计算两段台阶的方差,比较波动性大小.走甲台阶的波动性更,走起来更舒适.解:201921206x甲.231917206x乙.22221220201920212063s甲.=.=222212223201920172063s乙.=.=22ss甲乙 队员平均成绩方差甲9.72.12乙9.60.56丙9.80.56丁9.61.34甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲 B.乙 C.丙 D.丁C练一练议一议(1)在解决实际问题时,方差的作用是什么?反映数据的波动大小
18、方差越大,数据的波动越大;方差越小,数据 的波动越小,可用样本方差估计总体方差(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数 相等或相近时,再利用样本方差来估计总体数据的 波动情况例3 某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛在最近10次选拔赛中,他们的成绩(单位:cm)如下:甲:585 596 610 598 612 597 604 600 613 601乙:613 618 580 574 618 593 585 590 598 624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方
19、差判断出谁的成绩波动大解:110 x=甲(585+596+610+598+612+597+604+600+613+601)=6016,s2甲65.84;110 x=乙 (613+618+580+574+618+593+585+590+598+624)=5993,s2乙284.21由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定但甲队员的成绩不突出,乙队员和甲队员相比比较突出(2)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛解:从平均数
20、分析可知,甲、乙两队员都有夺冠的可能但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大 但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛做一做甲、乙两班各有8名学生参加数学竞赛,成绩如下表:甲6574708065666971乙6075786180626579请比较两班学生成绩的优劣.-5+4+0+10-5-4-1+170+70 8-10+5+8-9+10-8-5+9 70+708xx甲乙解:=23=67.5 22甲乙22甲乙 s,s从平均分看两个班一样,从方差看S S,甲班的成绩比较稳定但是从高分看,80分都是1人,75分以上的甲班只有1
21、人,而乙班有4人,占总人数的一半,可见乙班成绩优于甲班 综上可知,可见乙班成绩优于甲班当堂练习当堂练习1.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数 (单位:分)及方差s2如下表所示:如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是 ._x甲乙丙丁94989896 s211.211.8_x丙2.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在 五天中进球的个数统计结果如下:经过计算,甲进球的平均数为 =8,方差为 队员 每人每天进球数甲1061068乙79789x甲23.2s 甲
22、(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?222227+9+7+8+9=857 89 87 88 89 80.85xs乙2乙解:1 乙进球的平均数为 方差为 23=3.2=0.8ssss 22乙甲22乙甲我认为应该选乙队员去参加 分球投篮大赛.因为甲乙的平均成绩一样,所以,说明乙队员进球数更稳定.3.在学校,小明本学期五次测验的数学成绩和英语成绩分别如下(单位:分)数学7095759590英语8085908585通过对小明的两科成绩进行分析,你有何看法?对小明的学习你有什么建议?解:数学、英语的平均
23、分都是85分.数学成绩的方差为110,英语成绩的方差为10.建议:英语较稳定但要提高;数学不够稳定有待努力进步!课堂小结课堂小结根据方差做决策方差方差的作用:比较数据的稳定性利用样本方差估计总体方差导入新课讲授新课当堂练习课堂小结20.2 数据的波动程度第二十章 数据的分析第2课时 根据方差做决策情境引入学习目标1.能熟练计算一组数据的方差;(重点)2.能用样本的方差估计总体的方差及根据方差做决策.(难点)导入新课导入新课方差的计算公式,请举例说明方差的意义方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况2222121=-+-+-=-+-+-nsx xxxxxn(
24、)()()方差越大,数据的波动越大;方差越小,数据的波动越小复习引入讲授新课讲授新课根据方差做决策每个鸡腿的质量;鸡腿质量的稳定性抽样调查 问题1 某快餐公司的香辣鸡腿很受消费者欢迎现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿 (1)可通过哪些统计量来关注鸡腿的质量?(2)如何获取数据?例1 在问题1中,检查人员从两家的鸡腿中各随机抽取15 个,记录它们的质量(单位:g)如下表所示根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?解:样本数据的平均数分别是:74 7472 737515x甲+=75 7371
25、 757515x乙+=样本平均数相同,估计这批鸡腿的平均质量相近甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 752222274 7574 7572 7573 75315s甲()()()()-+-+-+-+-+-+-=2222275 7573 7577575 75815s乙()()()()-+-+1 1-=解:样本数据的方差分别是:由可知,两家加工厂的鸡腿质量大致相等;由 可知,甲加工厂的鸡腿质量更稳定,大小更均匀因此,快餐公司应该选购甲加工厂生产的鸡腿xx=甲
26、乙2s甲2s乙例2 在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?212021191920172420171923甲乙分析:通过计算两段台阶的方差,比较波动性大小.走甲台阶的波动性更,走起来更舒适.解:201921206x甲.231917206x乙.22221220201920212063s甲.=.=222212223201920172063s乙.=.=22ss甲乙 队员平均成绩方差甲9.72.12乙9.60.56丙9.80.56丁9.61.34甲、乙、丙、丁四名射击队员
27、考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲 B.乙 C.丙 D.丁C练一练议一议(1)在解决实际问题时,方差的作用是什么?反映数据的波动大小 方差越大,数据的波动越大;方差越小,数据 的波动越小,可用样本方差估计总体方差(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数 相等或相近时,再利用样本方差来估计总体数据的 波动情况例3 某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛在最近10次选拔赛中,他们的成绩(单位:cm)如下:甲:585 596 610 598 612 597 6
28、04 600 613 601乙:613 618 580 574 618 593 585 590 598 624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大解:110 x=甲(585+596+610+598+612+597+604+600+613+601)=6016,s2甲65.84;110 x=乙 (613+618+580+574+618+593+585+590+598+624)=5993,s2乙284.21由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定但甲队员的成绩不突出,乙队员和
29、甲队员相比比较突出(2)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛解:从平均数分析可知,甲、乙两队员都有夺冠的可能但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大 但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛做一做甲、乙两班各有8名学生参加数学竞赛,成绩如下表:甲6574708065666971乙6075786180626579请比较两班学生成绩的优劣.-5+4+0+10-5-4-1+170+70
30、8-10+5+8-9+10-8-5+9 70+708xx甲乙解:=23=67.5 22甲乙22甲乙 s,s从平均分看两个班一样,从方差看S S,甲班的成绩比较稳定但是从高分看,80分都是1人,75分以上的甲班只有1人,而乙班有4人,占总人数的一半,可见乙班成绩优于甲班 综上可知,可见乙班成绩优于甲班当堂练习当堂练习1.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数 (单位:分)及方差s2如下表所示:如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是 ._x甲乙丙丁94989896 s211.211.8_x丙2.某篮球队
31、对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在 五天中进球的个数统计结果如下:经过计算,甲进球的平均数为 =8,方差为 队员 每人每天进球数甲1061068乙79789x甲23.2s 甲(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?222227+9+7+8+9=857 89 87 88 89 80.85xs乙2乙解:1 乙进球的平均数为 方差为 23=3.2=0.8ssss 22乙甲22乙甲我认为应该选乙队员去参加 分球投篮大赛.因为甲乙的平均成绩一样,所以,说明乙队员进球数更稳定.3.在学校,小明本学期五次测验的数学成绩和英语成绩分别如下(单位:分)数学7095759590英语8085908585通过对小明的两科成绩进行分析,你有何看法?对小明的学习你有什么建议?解:数学、英语的平均分都是85分.数学成绩的方差为110,英语成绩的方差为10.建议:英语较稳定但要提高;数学不够稳定有待努力进步!课堂小结课堂小结根据方差做决策方差方差的作用:比较数据的稳定性利用样本方差估计总体方差
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。