ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:951.50KB ,
文档编号:5698333      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5698333.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(中考数学二次函数综合题汇编附答案.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

中考数学二次函数综合题汇编附答案.doc

1、一、二次函数 真题与模拟题分类汇编(难题易错题)1如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(3,0)(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点若点P在抛物线上,且,求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值【答案】(1)点B的坐标为(1,0).(2)点P的坐标为(4,21)或(4,5).线段QD长度的最大值为.【解析】【分析】(1)由抛物线的对称性直接得点B的坐标(2)用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标用待定系数法求出直线AC的解析式,由点

2、Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QDx轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)A、B两点关于对称轴对称 ,且A点的坐标为(3,0),点B的坐标为(1,0).(2)抛物线,对称轴为,经过点A(3,0),解得.抛物线的解析式为.B点的坐标为(0,3).OB=1,OC=3.设点P的坐标为(p,p2+2p-3),则.,解得.当时;当时,点P的坐标为(4,21)或(4,5).设直线AC的解析式为,将点A,C的坐标代入,得:,解得:.直线AC的解析式为.点Q在线段AC上,设点Q

3、的坐标为(q,-q-3).又QDx轴交抛物线于点D,点D的坐标为(q,q2+2q-3).,线段QD长度的最大值为.2某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价元之间符合一次函数关系,其图象如图所示求y与x的函数关系式;物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?【答案】(1);(2)当销售单价x定为每件80元时,厂家每月获得的利润最大,最大利润是4800元【解析】【分析】根据函数图象经过点和点,利用待定系数法即可求出y与x的函数关系式;先根据利润销售数量销售单价成

4、本,由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x的取值范围,根据二次函数的增减性可得最值【详解】解:设y与x的函数关系式为,函数图象经过点和点,解得:,与x的函数关系式为由题意得:试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,自变量x的取值范围是,当时,w随x的增大而增大,时,w有最大值,当时,答:当销售单价x定为每件80元时,厂家每月获得的利润最大,最大利润是4800元【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法3如图,在平面直角坐标系中,A

5、、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值【答案】(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】【分析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,

6、由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD90, 讨论BMD=90和BDM=90两种情况:当BMD=90时

7、,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形4如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA1,tanBAO3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线yax2+bx+c经过点A、B、C(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与COD相似时点P的坐标【答案】(1)抛物线的解析式为y=x22x+3;(2)当CEF与COD相似时,P点的坐标

8、为(1,4)或(2,3)【解析】【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得DOCAOB,根据待定系数法,可得函数解析式;(2)分两种情况讨论:当CEF90时,CEFCOD,此时点P在对称轴上,即点P为抛物线的顶点;当CFE90时,CFECOD,过点P作PMx轴于M点,得到EFCEMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案【详解】(1)在RtAOB中,OA1,tanBAO3,OB3OA3DOC是由AOB绕点O逆时针旋转90而得到的,DOCAOB,OCOB3,ODOA1,A,B,C的坐标分别为(1,0),(0,3),

9、(3,0),代入解析式为,解得:,抛物线的解析式为yx22x+3;(2)抛物线的解析式为yx22x+3,对称轴为l1,E点坐标为(1,0),如图,分两种情况讨论:当CEF90时,CEFCOD,此时点P在对称轴上,即点P为抛物线的顶点,P(1,4);当CFE90时,CFECOD,过点P作PMx轴于M点,CFE=PME=90,CEF=PEM,EFCEMP,MP3ME点P的横坐标为t,P(t,t22t+3)P在第二象限,PMt22t+3,ME1t,t0,t22t+33(1t),解得:t12,t23(与t0矛盾,舍去)当t2时,y(2)22(2)+33,P(2,3)综上所述:当CEF与COD相似时,P

10、点的坐标为(1,4)或(2,3)【点睛】本题是二次函数综合题解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP3ME5如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=1(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上当PANA,且PA=NA时,求此时点P的坐标;当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标【答案】(1)y=(x+1)2+4,顶点坐标为(1,4);(2)点P(1,2);P( ,)【解

11、析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为即可得到抛物线的解析式;(2)首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;,表示出来得到二次函数,求得最值即可试题解析:(1)抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为,解得:,二次函数的解析式为=,顶点坐标为(1,4);(2)令,解得或,点A(3,0),B(1,0),作PDx轴于点D,点P在上,设点P(x,),PANA,且PA=NA,PADAND,OA=PD,即,解得x=(舍去)或x=,点P(,2);设P(x,y),则,=OBO

12、C+ADPD+(PD+OC)OD=,当x=时,=,当x=时,=,此时P(,)考点:1二次函数综合题;2二次函数的最值;3最值问题;4压轴题6如图,已知二次函数的图象过点O(0,0)A(8,4),与x轴交于另一点B,且对称轴是直线x3(1)求该二次函数的解析式;(2)若M是OB上的一点,作MNAB交OA于N,当ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQx轴与抛物线交于Q过A作ACx轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标【答案】(1);(2)当t3时,SAMN有最大值3,此时M点坐标为(3,0);(3)P点坐标为(14,0)或(2,

13、0)或(4,0)或(8,0)【解析】【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为直线AB的解析式为y=2x-12,直线MN的解析式为y=2x-2t,再通过解方程组得N(),接着利用三角形面积公式,利用SAMN=SAOM-SNOM得到然后根据二次函数的性质解决问题;(3)设Q,根据相似三角形的判定方法,当时,PQOCOA,则;当时,PQOCAO,则,然后分别解关于m的绝对值方程可得到对应的P点坐标【详解】解:(1)抛物线过原点,对称轴是直线x3,B点坐标为(6,0),设抛物线解析式为yax(x6),把A(8,4)

14、代入得a824,解得a,抛物线解析式为yx(x6),即yx2x;(2)设M(t,0),易得直线OA的解析式为yx,设直线AB的解析式为ykx+b,把B(6,0),A(8,4)代入得,解得,直线AB的解析式为y2x12,MNAB,设直线MN的解析式为y2x+n,把M(t,0)代入得2t+n0,解得n2t,直线MN的解析式为y2x2t,解方程组得,则,SAMNSAOMSNOM ,当t3时,SAMN有最大值3,此时M点坐标为(3,0);(3)设,OPQACO,当时,PQOCOA,即,PQ2PO,即,解方程得m10(舍去),m214,此时P点坐标为(14,0);解方程得m10(舍去),m22,此时P点

15、坐标为(2,0);当时,PQOCAO,即,PQPO,即,解方程得m10(舍去),m28,此时P点坐标为(8,0);解方程得m10(舍去),m24,此时P点坐标为(4,0);综上所述,P点坐标为(14,0)或(2,0)或(4,0)或(8,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题7如图1,抛物线经过平行四边形的顶点、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动

16、点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=x2+2x+3;(2)当t=时,PEF的面积最大,其最大值为,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PHx轴,交直线l于点M,作FNPH,则可用t表示出PM的长,从而可表示出PEF的面积,再利

17、用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有PAE=90或APE=90两种情况,当PAE=90时,作PGy轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当APE=90时,作PKx轴,AQPK,则可证得PKEAQP,利用相似三角形的性质可得到关于t的方程,可求得t的值试题解析: (1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)A(0,3),D(2,3),BC=AD=2,B(1,0),C(1,0),线段AC的中点为(,),直线l将平行四边形ABCD分割为面积相等两部分,直线l过平行四边形的对称中心,A、D关于对称轴对称,抛物线对称轴为

18、x=1,E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,直线l的解析式为y=x+,联立直线l和抛物线解析式可得,解得或,F(,),如图1,作PHx轴,交l于点M,作FNPH,P点横坐标为t,P(t,t2+2t+3),M(t,t+),PM=t2+2t+3(t+)=t2+t+,SPEF=SPFM+SPEM=PMFN+PMEH=PM(FN+EH)=(t2+t+)(3+)=(t)+,当t=时,PEF的面积最大,其最大值为,最大值的立方根为=;(3)由图可知PEA90,只能有PAE=90或APE=90,当PAE=90时,如图2,作PGy轴,OA=OE,OAE=OEA=4

19、5,PAG=APG=45,PG=AG,t=t2+2t+33,即t2+t=0,解得t=1或t=0(舍去),当APE=90时,如图3,作PKx轴,AQPK,则PK=t2+2t+3,AQ=t,KE=3t,PQ=t2+2t+33=t2+2t,APQ+KPE=APQ+PAQ=90,PAQ=KPE,且PKE=PQA,PKEAQP,即,即t2t1=0,解得t=或t=(舍去),综上可知存在满足条件的点P,t的值为1或考点:二次函数综合题8如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,AEF=90,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FNBC(1)若点E是BC

20、的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,ECF的面积为y求y与x的函数关系式;当x取何值时,y有最大值,并求出这个最大值.【答案】(1)AE=EF;(2)y=-x2+2x(0x4),当x=2,y最大值=2.【解析】【分析】(1)在AB上取一点G,使AG=EC,连接GE,利用ASA,易证得:AGEECF,则可证得:AE=EF;(2)同(1)可证明AE=EF,利用AAS证明ABEENF,根据全等三角形对应边相等可得FN=BE,再表示出EC,然后利用三角形的面积公式即可列式表示出ECF的面积为y,然后整理再根据二次函数求解最值问题【详解】(1)如图,在AB

21、上取AG=EC,四边形ABCD是正方形,AB=BC,有AG=EC ,BG=BE ,又B=90,AGE=135,又BCD=90,CP平分DCN,ECF=135,BAEAEB=90,AEBFEC=90,BAE=FEC,在AGE和ECF中, ,AGEECF,AE=EF;(2)由(1)证明可知当E不是中点时同理可证AE=EF,BAE=NEF,B=ENF=90,ABEENF,FN=BE=x,SECF= (BC-BE)FN,即y= x(4-x),y=- x2+2x(0x4),当x=2,y最大值=2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,二次函数的最值问题,综合性较强,正确添加辅助线、熟练

22、掌握相关知识是解题的关键9(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m. (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=x2+2x+4,拱顶D到地面OA的

23、距离为10 m;(2)两排灯的水平距离最小是4 m【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值试题解析:(1)由题知点在抛物线上所以,解得,所以所以,当时,答:,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0)当x=2或x=10时,所以可以通过(3)

24、令,即,可得,解得答:两排灯的水平距离最小是考点:二次函数的实际应用10如图,已知抛物线经过点A(1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由【答案】(1)y=x2+x+2;(2)m=1或m=3时,四边形DM

25、QF是平行四边形;(3)点Q的坐标为(3,2)或(1,0)时,以点B、Q、M为顶点的三角形与BOD相似【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QMDF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知ODB=QMB,故分DOB=MBQ=90,利用DOBMBQ得,再证MBQBPQ得,即,解之即可得此时m的值;BQM=90,此时点Q与点A重合,BODBQM,易得点Q坐标详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点

26、C(0,2)代入,得:-4a=2,解得:a=-,则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,直线BD解析式为y=x-2,QMx轴,P(m,0),Q(m,-m2+m+2)、M(m,m-2),则QM=-m2+m+2-(m-2)=-m2+m+4,F(0,)、D(0,-2),DF=,QMDF,当-m2+m+4=时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:QMDF,ODB=QMB,分以下两种情况:当DOB=MBQ=90时,DOBMBQ,则,MBQ=90,MBP+PBQ=90,MPB=BPQ=90,MBP+BMP=90,BMP=PBQ,MBQBPQ,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,m=3,点Q的坐标为(3,2);当BQM=90时,此时点Q与点A重合,BODBQM,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与BOD相似点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|