ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.32MB ,
文档编号:5698520      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5698520.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(中考数学(二次函数提高练习题)压轴题训练含详细答案.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

中考数学(二次函数提高练习题)压轴题训练含详细答案.doc

1、一、二次函数 真题与模拟题分类汇编(难题易错题)1如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(1,0),B(3,0)两点,与y轴相交于点C(0,3)(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PHx轴于点H,与BC交于点M,连接PC求线段PM的最大值;当PCM是以PM为一腰的等腰三角形时,求点P的坐标【答案】(1)二次函数的表达式y=x22x3;(2)PM最大=;P(2,3)或(3-,24)【解析】【分析】(1)根据待定系数法,可得答案;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可

2、得答案;根据等腰三角形的定义,可得方程,根据解方程,可得答案【详解】(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x22x3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析式为y=x3,设M(n,n3),P(n,n22n3),PM=(n3)(n22n3)=n2+3n=(n)2+,当n=时,PM最大=;当PM=PC时,(n2+3n)2=n2+(n22n3+3)2,解得n1=0(不符合题意,舍),n2=2,n22n3=-3,P(2,-3);当PM=MC时,(n2+3n)2=n2+(n3+3)2,解得n1=0(不符合题意,舍),n2=3+

3、(不符合题意,舍),n3=3-,n22n3=2-4,P(3-,2-4);综上所述:P(2,3)或(3-,24)【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.2如图,已知抛物线y=x2bxc与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限当线段PQ=AB时,求tanCED的值;当以

4、点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标【答案】(1)抛物线的函数表达式为y=x22x3(2)直线BC的函数表达式为y=x3(3)P1(1,2),P2(1,)【解析】【分析】已知C点的坐标,即知道OC的长,可在直角三角形BOC中根据BCO的正切值求出OB的长,即可得出B点的坐标已知了AOC和BOC的面积比,由于两三角形的高相等,因此面积比就是AO与OB的比由此可求出OA的长,也就求出了A点的坐标,然后根据A、B、C三点的坐标即可用待定系数法求出抛物线的解析式【详解】(1)抛物线的对称轴为直线x=1,1b=-2抛物线与y轴交于点C(0,-3),c=-3,抛物线的函数表达式为

5、y=x2-2x-3;(2)抛物线与x轴交于A、B两点,当y=0时,x2-2x-3=0x1=-1,x2=3A点在B点左侧,A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则,直线BC的函数表达式为y=x-3;(3)AB=4,PQ=AB,PQ=3PQy轴PQx轴,则由抛物线的对称性可得PM=,对称轴是直线x=1,P到y轴的距离是,点P的横坐标为,P(,)F(0,),FC=3-OF=3-=PQ垂直平分CE于点F,CE=2FC=点D在直线BC上,当x=1时,y=-2,则D(1,-2),过点D作DGCE于点G,DG=1,CG=1,GE=CE-CG=-1=在

6、RtEGD中,tanCED=P1(1-,-2),P2(1-,-)设OE=a,则GE=2-a,当CE为斜边时,则DG2=CGGE,即1=(OC-OG)(2-a),1=1(2-a),a=1,CE=2,OF=OE+EF=2F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+或1-点P在第三象限P1(1-,-2),当CD为斜边时,DECE,OE=2,CE=1,OF=2.5,P和F的纵坐标为:-,把y=-,代入抛物线的函数表达式为y=x2-2x-3得:x=1-,或1+,点P在第三象限P2(1-,-)综上所述:满足条件为P1(1-,-2),P2(1-,-)【点睛】本题是

7、二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果3抛物线yax2+bx3(a0)与直线ykx+c(k0)相交于A(1,0)、B(2,3)两点,且抛物线与y轴交于点C(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若PCD是以CD为底边的等腰三角形,求出点P的坐标【答案】(1)yx22x3;(2)C(0,3),D(0,1);(3)P(1+,2).【解析】【分析】(1)把A(1,0)、B(2,3)两点坐标代入yax2+bx3可得抛物线解析式(2)当x0时可求C点坐标,求出直线AB解析式,当x

8、0可求D点坐标(3)由题意可知P点纵坐标为2,代入抛物线解析式可求P点横坐标【详解】解:(1)把A(1,0)、B(2,3)两点坐标代入yax2+bx3可得 解得 yx22x3(2)把x0代入yx22x3中可得y3C(0,3)设ykx+b,把A(1,0)、B(2,3)两点坐标代入解得 yx1D(0,1)(3)由C(0,3),D(0,1)可知CD的垂直平分线经过(0,2)P点纵坐标为2,x22x32解得:x1,x0x1+P(1+,2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的

9、横坐标4(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m. (1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=x2+2x+4,拱顶D到地面OA的距离为10 m;(

10、2)两排灯的水平距离最小是4 m【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值试题解析:(1)由题知点在抛物线上所以,解得,所以所以,当时,答:,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0)当x=2或x=10时,所以可以通过(3)令,即,可得,解得

11、答:两排灯的水平距离最小是考点:二次函数的实际应用5对于二次函数 y=ax2+(b+1)x+(b1),若存在实数 x0,使得当 x=x0,函数 y=x0,则称x0 为该函数的“不变值”.(1)当 a=1,b=2 时,求该函数的“不变值”;(2)对任意实数 b,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A、B 两点的横坐标是该函数的“不变值”,且 A、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)1,3;(2)0a0,即b2-4ab+4a0,把b2-4ab+4a看作b的二次函数,由于对任意实数b,b2-4ab+4a

12、0成立,则(4a)2-4.4a0,即b2-4ab+4a0,而对任意实数b,b2-4ab+4a0成立,所以(4a)2-4.4a0,解得0a1.(3)设A(x1,x1),B(x2,x2),则x1+x2 A,B的中点的坐标为( ),即M( )A、B两点关于直线y=kx-2a+3对称,又A,B在直线y=x上,k=-1,A,B的中点M在直线y=kx-2a+3上.= -2a+3 得:b=2a2-3a所以当且仅当a= 时,b有最小值【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6如图,已知抛物线的图

13、象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标。【答案】(1)(2)(3)P的坐标为(1,12)或(6,5)或(2,3)或(3,4)【解析】【分析】(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。(2)构造MN

14、关于点M横坐标的函数关系式,应用二次函数最值原理求解。(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。【详解】解:(1)设直线BC的解析式为,将B(5,0),C(0,5)代入,得,得。直线BC的解析式为。将B(5,0),C(0,5)代入,得,得。抛物线的解析式。(2)点M是抛物线在x轴下方图象上的动点,设M。点N是直线BC上与点M横坐标相同的点,N。当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。MN的最大值是。(3)当MN取得最大值时,N。的对称轴是,B(5,0),A(1,0)。AB=4。由

15、勾股定理可得,。设BC与PQ的距离为h,则由S1=6S2得:,即。如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则BH=,EH是直线BC沿y轴方向平移的距离。易得,BEH是等腰直角三角形,EH=。直线BC沿y轴方向平移6个单位得PQ的解析式:或。当时,与联立,得,解得或。此时,点P的坐标为(1,12)或(6,5)。当时,与联立,得,解得或。此时,点P的坐标为(2,3)或(3,4)。综上所述,点P的坐标为(1,12)或(6,5)或(2,3)或(3,4)。7在平面直角坐标系xOy中(如图)已知抛物线y=x2+bx+c经过点A(1,0)和点B(0,),顶点为C,点D在其对称轴

16、上且位于点C下方,将线段DC绕点D按顺时针方向旋转90,点C落在抛物线上的点P处(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标【答案】(1)抛物线解析式为y=x2+2x+;(2)线段CD的长为2;(3)M点的坐标为(0,)或(0,)【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=(x2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,t),根据旋转性质得PDC=90,DP=

17、DC=t,则P(2+t,t),然后把P(2+t,t)代入y=x2+2x+得到关于t的方程,从而解方程可得到CD的长;(3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,2),设M(0,m),当m0时,利用梯形面积公式得到(m+2)2=8当m0时,利用梯形面积公式得到(m+2)2=8,然后分别解方程求出m即可得到对应的M点坐标【详解】(1)把A(1,0)和点B(0,)代入y=x2+bx+c得,解得,抛物线解析式为y=x2+2x+;(2)y=(x2)2+,C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,t),线段DC绕点D按顺时针方向旋转90,

18、点C落在抛物线上的点P处,PDC=90,DP=DC=t,P(2+t,t),把P(2+t,t)代入y=x2+2x+得(2+t)2+2(2+t)+=t,整理得t22t=0,解得t1=0(舍去),t2=2,线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),抛物线平移,使其顶点C(2,)移到原点O的位置,抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,E点坐标为(2,2),设M(0,m),当m0时,(m+2)2=8,解得m=,此时M点坐标为(0,);当m0时,(m+2)2=8,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)

19、或(0,)【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.8如图,抛物线经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为求抛物线的解析式点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动当其中一个点到达终点时,另一点也停止运动设运动时间为t秒,求t为何值时,PBE的面积最大并求出最大值过点A作于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q若点A、M、N

20、、Q为顶点的四边形是平行四边形,求点N的横坐标【答案】;当时,PBE的面积最大,最大值为;点N的横坐标为:4或或【解析】【分析】点B、C在直线为上,则B(n,0)、C(0,n),点A(1,0)在抛物线上,所以,解得,因此抛物线解析式:;先求出点P到BC的高h为,于是,当时,PBE的面积最大,最大值为;由知,BC所在直线为:,所以点A到直线BC的距离,过点N作x轴的垂线交直线BC于点P,交x轴于点H设,则、,易证PQN为等腰直角三角形,即,所以解得(舍去),解得,(舍去),解得(舍去),【详解】解:点B、C在直线为上,B(n,0)、C(0,n),点A(1,0)在抛物线上,抛物线解析式:;由题意,

21、得,由知,点P到BC的高h为,当时,PBE的面积最大,最大值为;由知,BC所在直线为:,点A到直线BC的距离,过点N作x轴的垂线交直线BC于点P,交x轴于点H设,则、,易证PQN为等腰直角三角形,即,解得,点A、M、N、Q为顶点的四边形是平行四边形,;,解得,点A、M、N、Q为顶点的四边形是平行四边形,解得,点A、M、N、Q为顶点的四边形是平行四边形,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键9如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交

22、于点C(0,5)。(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标。【答案】(1)(2)(3)P的坐标为(1,12)或(6,5)或(2,3)或(3,4)【解析】【分析】(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。(3)

23、根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。【详解】解:(1)设直线BC的解析式为,将B(5,0),C(0,5)代入,得,得。直线BC的解析式为。将B(5,0),C(0,5)代入,得,得。抛物线的解析式。(2)点M是抛物线在x轴下方图象上的动点,设M。点N是直线BC上与点M横坐标相同的点,N。当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。MN的最大值是。(3)当MN取得最大值时,N。的对称轴是,B(5,0),A(1,0)。AB=4。由勾股定理可得,。设BC与PQ的距离为h,则由S1=6S2得:

24、,即。如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则BH=,EH是直线BC沿y轴方向平移的距离。易得,BEH是等腰直角三角形,EH=。直线BC沿y轴方向平移6个单位得PQ的解析式:或。当时,与联立,得,解得或。此时,点P的坐标为(1,12)或(6,5)。当时,与联立,得,解得或。此时,点P的坐标为(2,3)或(3,4)。综上所述,点P的坐标为(1,12)或(6,5)或(2,3)或(3,4)。10空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩

25、形菜园面积为450平方米如图1,求所利用旧墙AD的长;(2)已知050,且空地足够大,如图2请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值【答案】(1)利用旧墙AD的长为10米(2)见解析.【解析】【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系【详解】(1)设AD=x米,则AB=米依题意得,450解得x1=10,x2=90a=20,且xax=90舍去利用旧墙AD的长为10米(2)设AD=x米,矩形ABCD的面积为S平方米如果按图一方案围成矩形菜园,依题意得

26、:S=,0xa0a50xa50时,S随x的增大而增大当x=a时,S最大=50a-a2如按图2方案围成矩形菜园,依题意得S=,ax50+当a25+50时,即0a时,则x=25+时,S最大=(25+)2=,当25+a,即a50时,S随x的增大而减小x=a时,S最大=,综合,当0a时,-()=0,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当a50时,两种方案围成的矩形菜园面积最大值相等当0a时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当a50时,围成长为a米,宽为(50-)米的矩形菜园面积最大,最大面积为()平方米【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|