ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:104KB ,
文档编号:5703230      下载积分:10 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5703230.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(仙人指路)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高考中圆锥曲线最值问题分类总结.doc)为本站会员(仙人指路)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高考中圆锥曲线最值问题分类总结.doc

1、高考中圆锥曲线最值问题求解方法分析 圆锥曲线最值问题是高考中的一类常见问题,体现了圆锥曲线与三角、函数、不等式、方程、平面向量等代数知识之间的横向联系。解此类问题与解代数中的最值问题方法类似,。由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。下面介绍几种常见求解方法。一、 定义法 有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。例1、 已知抛物线 ,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P,使|AP|+|PF|取最小值 ,并求的最小值 。分析:由点A引准线的垂线,垂足Q,则 |AP|+|PF|

2、=|AP|+|PQ|, 即为最小值。解: 如图,, 焦点F(1,0) 。 由点A引准线x= -1的垂线 ,垂足Q,则 |AP|+|PF|=|AP|+|PQ|, 即为最小值. . 由, 得 为所求点. 若另取一点 , 显然 。二、 参数法 利用椭圆、双曲线参数方程转化为三角函数问题,或利用直线、抛物线参数方程转化为函数问题求解。例2、椭圆的切线 与两坐标轴分别交于A,B两点 , 求三角形OAB的最小面积 。分析;写出椭圆参数方程,设切点为,可得切线方程。 解: 设切点为 , 则切线方程为 .令y=0, 得切线与x轴交点;令x=0,得切线与y轴交点B(0,)= 三 、二次函数法 将所求问题转化为二

3、次函数最值问题,再利用配方法或均值不等式或判别式等方法求解。例3、过动直线x+2y=p与定直线2x-y=a的交点(其中)的等轴双曲线系中 , 当p为何值时,达到最大值与最小值?分析:求出交点坐标代入双曲线,可得的二次函数表达式,再利用函数方法求解。解:由 , 得 交点, 交点Q坐标代入双曲线,= =.当 , ,又 ,;当p=3a时, 四 、几何法 将圆锥曲线问题转化为平面几何问题,再利用平面几何知识,如对称点、三角形三边关系、平行间距离等求解。例 4、 已知椭圆 和直线 l:x-y+9=0 ,在l上取一点M ,经过点M且以椭圆的焦点为焦点作椭圆 ,求M在何处时所作椭圆的长轴最短,并求此椭圆方程

4、 。分析;设 是关于l对称点 , 可求出 坐标 ,过的直线方程与x-y+9=0联立得交点M为所求。解 :由椭圆方程 ,得, 设 是关于l对称点 , 可求出 坐标为(-9,6) , 过的直线方程:x+2y-3=0与x-y+9=0联立,得交点M(-5,4), 即过M的椭圆长轴最短。由 ,得,, 所求椭圆方程为 .五、不等式法 列出最值关系式,利用均值不等式“等号成立”的条件求解。例5 、过椭圆的焦点的直线交椭圆A,B两点 ,求面积的最大值 。分析:由过椭圆焦点,写出直线AB方程为y=kx+1,与椭圆方程联立,消去y,得关于x的一元二次方程,巧妙的利用根与系数的关系,可以起到避繁就简的效果。 解 : 椭圆焦点 ,设过焦点(0,1) ,直线方程为y=kx+1 与联立 ,消去y, 得 , 其中两根为A,B横坐标 。 将三角形AOB看作与组合而成 ,|OF| 是公共边 ,它们在公共边上的高长为 ., 其中 |OF|=c=1. =. 当 即k=0 时,取等号 ,即当直线为 y=1时 , 得到的面积最大值为 。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|