1、坐标系与参数方程坐标系与参数方程高考定位高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.真真 题题 感感 悟悟考考 点点 整整 合合1.直角坐标与极坐标的互化 2.直线的极坐标方程3.圆的极坐标方程4.直线的参数方程5.圆、椭圆的参数方程【迁移探究1】本例条件不变,求直线C1与曲线C3交点的极坐标.【迁移探究2】本例条件不变,求圆C2关于极点的对称圆的方程.解点(,)与点(,)关于极点对称,设点(,)为对称圆上任意一点,则(
2、,)在圆C2上,()22cos 4sin 40,故所求圆C2关于极点的对称圆方程为22cos 4sin 40.探究提高1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.探究提高1.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用和的几何意义,直接求解,能达到化繁为简的解题目的.1.在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.2.要熟悉常见曲线的参数方程、极坐标方程,如:圆、椭圆、及过一点的直线,在研究直线与它们的位置关系时常用的技巧是转化为普通方程解答.