1、期末总复习期末总复习人 教 版 七 年 级 数 学 下 册人 教 版 七 年 级 数 学 下 册情景引入情景引入合作探究合作探究课堂练习课堂练习课堂小结课堂小结达标测试达标测试读书之法,在循序而渐进,熟读而精思。读书之法,在循序而渐进,熟读而精思。(一)相交线(一)相交线1 1、邻补角的和为、邻补角的和为 ;2 2、对顶角、对顶角 ;3 3、在在同一平面内,同一平面内,过一点过一点 条直线与已条直线与已知直线垂直知直线垂直。4 4、连接直线外一点与直线上各点的所有线段中,、连接直线外一点与直线上各点的所有线段中,最短,简单说成:最短,简单说成:。(二)平行线(二)平行线5 5、经过直线外一点,
2、、经过直线外一点,条直线与这条直条直线与这条直线平行线平行。6 6、平行线的判定、性质:、平行线的判定、性质:7 7、如果两条直线都与第三条直线平行,那么这两条直、如果两条直线都与第三条直线平行,那么这两条直线线 ;8 8、垂直于同一条直线的两条直线、垂直于同一条直线的两条直线 。知识要点180180相等相等有且只有有且只有1垂线段垂线段垂线段垂线段有且只有有且只有1互相平行互相平行互相平行互相平行(三)命题(三)命题1010、什么是命题?、什么是命题?1111、命题由哪两部分组成?、命题由哪两部分组成?1212、命题可以分为哪两种?、命题可以分为哪两种?(四)平移(四)平移1313、平移时,
3、新图形与原图形的、平移时,新图形与原图形的 和和 完全相同;连接各对应点的线段完全相同;连接各对应点的线段 且且 。判断一件事情的语句叫做判断一件事情的语句叫做命题命题。命题都由命题都由题设题设和和结论结论两部分组成。两部分组成。真命题与假命题真命题与假命题形状形状大小大小平行平行相等相等1 1、下列图形中,、下列图形中,1和和2是对顶角的是(是对顶角的是()2、如右图,若、如右图,若AOC=30,则,则BOD=,BOC=典型例题C301504 4、经过两次转弯后,行走的方向相同,则可能是、经过两次转弯后,行走的方向相同,则可能是()A A、第一次左转、第一次左转100100,第二次左转,第二
4、次左转100100B B、第一次左转、第一次左转100100,第二次左转,第二次左转8080C C、第一次左转、第一次左转100100,第二次右转,第二次右转100100D D、第一次左转、第一次左转100100,第二次右转,第二次右转80805 5、下列能判断、下列能判断ABABCDCD的是的是()()A A、1=2 B、4=3C C、1+2=180D D、ADC+BCD=1803 3、如图,、如图,OHOHABAB,OA=OB=5cmOA=OB=5cm,OH=3cmOH=3cm,P P在在ABAB上,则上,则OPOP的取值的取值范围是范围是 .3OP5CB6 6、把、把“等角的补角相等等角
5、的补角相等”改为改为“如果如果,那么,那么”的形式的形式为为 .如果两个角是等角的补角如果两个角是等角的补角,那么这两个角相等那么这两个角相等.7 7、如图,、如图,ABABEFEFDCDC,EGEGBDBD,则,则图中与图中与1相等的角有相等的角有 个个.69、如右图,、如右图,ABDE,则,则 1+2+3=.8、下列命题是真命题的是(、下列命题是真命题的是()A、两个锐角的和是锐角;、两个锐角的和是锐角;B、同旁内角互补、同旁内角互补 C、互补的角是邻补角;、互补的角是邻补角;D、两个负数的和为负数、两个负数的和为负数D3601010、如图,、如图,ABCABC经过平移后,点经过平移后,点
6、A A移到了移到了AA,画出平移后,画出平移后的的ABC.ABC.BC1111、如图、如图1 1,ABABCDCD,EGEG平分平分BEF,若,若1=76,求求2的度数。的度数。AB/CE2+BEF=180 1=761=76BEF=180-2=180-76=104BEF=180-2=180-76=104EG平分平分BEFBEFBEG=BEF=52 AB/CD2=BEG=52 解:解:(角平分线的性质角平分线的性质)(已知已知)(已知已知)(两直线平行,同旁内角互补两直线平行,同旁内角互补)(等量代换等量代换)(已知)(已知)(已知已知)(两直线平行,内错角相等两直线平行,内错角相等)2112、
7、如图、如图2,EBDC,C=E,证明:证明:A=ADE EB/DCC=ABEC=EABE=EED/AC2=BEG=52证明:(已知已知)(已知已知)(两直线平行,同位角相等两直线平行,同位角相等)(等量代换等量代换)(内错角相等,两直线平行内错角相等,两直线平行)(两直线平行,内错角相等两直线平行,内错角相等)13、如图、如图3,CDAB,EFAB,1=2,求证:求证:AGD=ACB CDAB,EFABCD/EF2=32=31=21=21=3DG/BCAGD=ACB证明:证明:(两直线两直线 平行,同位角相等平行,同位角相等)(已知已知)(同垂直于一条直线的两条直线平行同垂直于一条直线的两条直
8、线平行)(等量代换等量代换)(已知)(已知)(内错角相等,两直线内错角相等,两直线 平行平行)(两直线平行,同位角相等两直线平行,同位角相等)14、如图如图5,D=E,ABE=D+E,BC是是ABE的平分线,求证:的平分线,求证:BCDE D=E,ABE=D+ED=E,ABE=D+ED=ABED=ABEBC是是ABEABE的平分线的平分线ABC=ABED=ABCBC/DE证明:证明:(角平分线的性质角平分线的性质)(已知已知)(等式的性质等式的性质)(等量代换等量代换)(已知)(已知)(同位角相等,两直线同位角相等,两直线 平行平行)21211 15 5、如图,已知、如图,已知ABABCDCD
9、,请,请猜想各个图中猜想各个图中AMC与与MAB、MCD的关系。的关系。过点过点M作作MN/ABA+AMN=180AB/MN MN/CDMCD+NMC=180A+AMN+NMC+MCD=180即即AMC+MAB+MCD=360解:图(解:图(1)(两直线两直线 平行,同旁内角互补平行,同旁内角互补)(两直线两直线 平行,同旁内角互补平行,同旁内角互补)(同平行于一条直线的两条直线平行同平行于一条直线的两条直线平行)(等式的性质等式的性质)(已知)(已知)N1 15 5、如图,已知、如图,已知ABABCDCD,请,请猜想各个图中猜想各个图中AMC与与MAB、MCD的关系。的关系。过点过点M作作M
10、N/ABA=AMNAB/MN MN/CDMCD=NMCA+MCD=AMN+NMC即即AMC=MAB+MCD解:图(解:图(2)(两直线两直线 平行,内错角相等平行,内错角相等)(两直线两直线 平行,内错角相等平行,内错角相等)(同平行于一条直线的两条直线平行同平行于一条直线的两条直线平行)(等式的性质等式的性质)(已知)(已知)N在数学天地里,重要的不是我在数学天地里,重要的不是我们知道什么,而是我们怎么知们知道什么,而是我们怎么知道什么。道什么。毕达哥拉斯毕达哥拉斯期末总复习期末总复习人 教 版 七 年 级 数 学 下 册人 教 版 七 年 级 数 学 下 册情景引入情景引入合作探究合作探究
11、课堂练习课堂练习课堂小结课堂小结达标测试达标测试读书之法,在循序而渐进,熟读而精思。读书之法,在循序而渐进,熟读而精思。乘方乘方开方开方开平方开平方开立方开立方平方根平方根立方根立方根有理数有理数无理数无理数实数实数互为逆运算互为逆运算算术平方根算术平方根负的平方根负的平方根知识结构特殊:特殊:0 0的算术平方根是的算术平方根是0 0。00 记记作作:1.算术平方根的定义:算术平方根的定义:一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。x2a 一般地,如果一个数的平方等于a,那么这个数就叫做a 的平方根(或
12、二次方根)2.平方根的定义:平方根的定义:这就是说,如果x 2=a,那么 x 就叫做 a 的平方根a的平方根记为 。a基本概念及性质3.平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根。4.立方根的定义:一般地,如果一个数的立方等于a,那么这个数就叫做a的立方根,也叫做a的三次方根记作.3a 其中a是被开方数,是根指数,符号“”读做“三次根号”35.立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。你知道算术平方根、平方根、立方根联系和区别吗?你知道算术平方根、平方根、立方根联系和区别吗?算术平方根 平方根 立方根表示方法表示方法a
13、的取值的取值性性质质a3aa0a是任何数开方开方a0a正数正数0负数负数正数(一个)正数(一个)0没有没有互为相反数(两个)互为相反数(两个)0没有没有正数(一个)正数(一个)0负数(一个)负数(一个)求一个数的平方根求一个数的平方根的运算叫开平方的运算叫开平方求一个数的立方根求一个数的立方根的运算叫开立方的运算叫开立方是本身是本身0,100,1,-1 1.说出下列各数的平方根 (1)(2)(3)161722562)35(2.x取何值时,下列各式有意义 (1)(2)(3)x424x312 x(x-4)(X为任意实数为任意实数)(X为任意实数为任意实数)例题学习解解:(1)1721674(2)2
14、5616164(3)25()325925953 122333yy或当方程中出现平方时,若有解,一般都有两个解当方程中出现平方时,若有解,一般都有两个解1x当方程中出现立方时,一般都有一个解当方程中出现立方时,一般都有一个解解解:94)3(2 y不要遗漏不要遗漏3.解下列方程:4)3(92 y(1).012532273)(x(2).解解:125)32(273x27125)32(3x32712532x3532x943 y323y2a2a33a33a=a0a00aa)0(aaaaa的值求已知332,aaoa0a为任何数a为任何数a解解:ao323aaaa0aa 实数实数有理数有理数无理数无理数分数分
15、数整数整数正整数正整数 0负整数负整数正分数正分数负分数负分数自然数自然数正无理数正无理数负无理数负无理数无限不循环小数无限不循环小数有限小数及无限循环小数有限小数及无限循环小数一般有三种情况一般有三种情况、)1(开不尽的数”“”“23,、00010100100010.0)3(类似于、实数一、判断下列说法是否正确:一、判断下列说法是否正确:1.实数不是有理数就是无理数。()2.无限小数都是无理数。()3.无理数都是无限小数。()4.带根号的数都是无理数。()5.两个无理数之和一定是无理数。()6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。()达标测试,41,23,7,
16、25,2,320,5,83,94,0 3737737773.0(相邻两个(相邻两个3之间的之间的7的个数逐次加的个数逐次加1),41,23,7,2,5,83,0 3737737773.0,25 三三.求下列各式的值:求下列各式的值:1.=;2.=;3.(x1)=;4.(x1)=。2)12(2)31(2)1(x2)1(x四四.已知实数已知实数a、b、c,在数轴上的位置如下图所示,在数轴上的位置如下图所示,试化简:试化简:(1)|ab|+|ca|+2)(cb2a解解:aabcabc0,abc acb22()aabcabc0,0,0,0aabcabc()()()aabcabcaabcabc 22ab
17、c四四.已知实数已知实数a、b、c,在数轴上的位置如下图所示,在数轴上的位置如下图所示,试化简:试化简:2()ba2a(2)|a+bc|+|b2c|+2解解:()(2)()2abcbcbaa 0,abc acb222()2abcbcbaa0,20,0abcbcba 22abcbcbaa22abcbcbaa 3cb在数学天地里,重要的不是我在数学天地里,重要的不是我们知道什么,而是我们怎么知们知道什么,而是我们怎么知道什么。道什么。毕达哥拉斯毕达哥拉斯期末总复习期末总复习人 教 版 七 年 级 数 学 下 册人 教 版 七 年 级 数 学 下 册情景引入情景引入合作探究合作探究课堂练习课堂练习课
18、堂小结课堂小结达标测试达标测试读书之法,在循序而渐进,熟读而精思。读书之法,在循序而渐进,熟读而精思。1 1、有顺序的两个数、有顺序的两个数a a和和b b组成的数对叫组成的数对叫做做 ,记为,记为 ,它,它可以准确地表示出一个位置。可以准确地表示出一个位置。2 2、在平面内两条互相、在平面内两条互相 ,原点,原点 的数的数轴,组成了平面直角坐标系。水平的数轴称为轴,组成了平面直角坐标系。水平的数轴称为 或或 ,取向,取向 为正方向;竖直的数轴称为为正方向;竖直的数轴称为 或或 ,取向,取向 为正方向;两坐标轴的交点为正方向;两坐标轴的交点为平面直角坐标系的为平面直角坐标系的 。3 3、由、由
19、A A点分别向点分别向x x轴和轴和y y轴作垂线,落在轴作垂线,落在x x轴上的垂足的坐标称轴上的垂足的坐标称为为 ,落在,落在y y轴上的垂足的坐标称轴上的垂足的坐标称为为 ,横坐标写在,横坐标写在 面,纵坐标面,纵坐标写在写在 面,中间用逗号隔开,然后用小括号括起来。面,中间用逗号隔开,然后用小括号括起来。知识要点回顾有序数对有序数对(a,b)垂直垂直重合重合X轴轴横轴横轴右右y轴轴纵轴纵轴上上原点原点横坐标横坐标纵坐标纵坐标前前后后4 4、坐标平面被两条坐标轴分成了四个象限,各象限内的点的、坐标平面被两条坐标轴分成了四个象限,各象限内的点的坐标特点:坐标特点:第一象限(第一象限(,);
20、第二象限);第二象限(,)第三象限(第三象限(,);第四象限);第四象限(,)5 5、利用平面直角坐标系表示地理位置有三个步骤:、利用平面直角坐标系表示地理位置有三个步骤:(1 1)建立平面直角坐标系;)建立平面直角坐标系;(2 2)确定单位长度;)确定单位长度;(3 3)描出点,写出坐标)描出点,写出坐标6 6、P P(x x,y y)向左平移)向左平移a a个单位长度之后坐标变个单位长度之后坐标变为为 ,向右平移,向右平移a a个单位长度之后坐标个单位长度之后坐标变为变为 ,向上平移,向上平移b b个单位长度之后坐个单位长度之后坐标变为标变为 ,向下平移,向下平移b b个单位长度之后坐个单
21、位长度之后坐标变为标变为 .+-+-+-(x-a,y)(x+a,y)(x,y+b)(x,y-b)7 7、P P(a a,b b)到)到x x轴的距离是轴的距离是 ,到,到y y轴的距离轴的距离是是 .8 8、x x轴上的点的轴上的点的 坐标为坐标为0 0;y y轴上的点的轴上的点的 坐标为坐标为0 0;平行于平行于x x轴的直线上的点的轴的直线上的点的 坐标相同;坐标相同;平行于平行于y y轴的直线上的点的轴的直线上的点的 坐标相坐标相同;同;一、三象限角平分线上的一、三象限角平分线上的点点 ;二、四象限角平分线上的二、四象限角平分线上的点点 。IaIIbI纵坐标纵坐标横坐标横坐标纵坐标纵坐标
22、横坐标横坐标横纵坐标相等横纵坐标相等横纵坐标互为相反数横纵坐标互为相反数1、点(-3,1)在第 象限,点(1,-2)在第 象限,点(0,3)在 上,点(-2,0)在 上。2、点(4,-3)到x轴的距离是 ,到y轴的距离是 。3、过点(4,-2)和(4,6)两点的直线一定平行 ;过点(4,-1)和(2,-1)两点的直线一定垂直于 。4、已知线段AB=3,且ABx轴,点A的坐标为(1,-2),则点B的坐标是 。5、一个长方形的三个顶点的坐标是(-1,-1),(3,-1),(-1,2),则第四个顶点的坐标是 。典型例题二四y轴x轴34y轴x轴(4,-2)或(-2,-2)(3,2)6、点P向下平移3个
23、单位长度,再向右平移2个单位长度,得到Q(-1,2),则P点的坐标是 。7、如图,O(1,-2),B(4,-1),则点C的坐标为 。8、(2,-2)和(2,4)之间的距离是 。9、在平面直角坐标系中,描出下列各点:A(0,-3),B(1,-3),C(-2,4),D(-4,0)E(2,5),F(-3,-3)-5 -4 -3-2-1 1 2 3 4 5oyx54321 -1-2-3-4-5(-3,5)(2,0)6A(0,-3)B(1,-3)C(-2,4)D(-4,0)E(2,5)F(-3,-3)10、写出下列各点的坐标A(2,1)B(-4,3)C(-2,-3)D(3,-2)E(-3,0)F(0,2
24、)1111、如图,已知、如图,已知D D的坐标为(的坐标为(2 2,-2-2),请建立直角),请建立直角坐标系,并写出其它点的坐标。坐标系,并写出其它点的坐标。yx(3,3)(0,4)(-3,2)(2,-2)(-2,-1)12、如图,(1)求A、B、C的坐标;(2)求ABC的面积;(3)将ABC向右平移2个单位长度,再向下平移3个单位长度得到A1B1C1,求A1,B1,C1的坐标解:解:(1)A(-2,5),B(-4,-1),C(2,3)(2)EFGSAEB=1226=6SAFC=1242=4SBGC=1264=12S正方形正方形BGFE=66=36SABC=36-(6+4+12)=14(3)
25、A1(0,2)B1(-2,-4)C1(4,0)13、四边形ABCD各个顶点的坐标分别为 A(0,5),B(0,1),C(4,2),D(5,4)。求四边形ABCD的面积。EFGH解:解:SAED=1251SACG=1212=1SBHC=1241=2S正方形正方形CHFG=11=1S四边形四边形ABCD=20-(2.5+1+2+1)=20-6.5 =13.5=2.5S长方形长方形ABFE=54=20在数学天地里,重要的不是我在数学天地里,重要的不是我们知道什么,而是我们怎么知们知道什么,而是我们怎么知道什么。道什么。毕达哥拉斯毕达哥拉斯期末总复习期末总复习人 教 版 七 年 级 数 学 下 册人
26、教 版 七 年 级 数 学 下 册情景引入情景引入合作探究合作探究课堂练习课堂练习课堂小结课堂小结达标测试达标测试读书之法,在循序而渐进,熟读而精思。读书之法,在循序而渐进,熟读而精思。1、什么是二元一次方程?什么是二元一次方程组?2、怎么表示二元一次方程和二元一次方程组的解?2、解二元一次方程组的思想是:()3、解二元一次方程组的方法有:(1)步骤:(2)4、什么时候用代入法?什么时候用加减法?5、需要化简的方程,化简到什么程度?知识要点回顾消元消元代入消元法代入消元法(1)变形;)变形;(2)代入;)代入;(3)求解;)求解;(4)回代求解;)回代求解;(5)写解。)写解。加减消元法加减消
27、元法1.下列是二元一次方程组的是()+y=3x12x+y=0(A)3x-1=02y=5(B)x+y=73y+z=4(C)5x -y=-23y+x=4(D)2B什么是二元一次方程?考点一:典型例题21221mnmyx3.若方程 是二元一次方程,则mn=。2.如果 是一个二元一次方程,那么数 a-b=。1032162312babayx-1-13、已知5x+y=12,(1)用含x的式子表示y:;用含y的式子表示x:。(2)当x=1时,y=;(3)写出该方程的两组正整数解 。y=12-5xx=12-y5717xy22xy4.方程x+3y=9的正整数解是_。5.二元一次方程4x+y=20 的正整数解是_
28、。61xy32xy116xy212xy38xy44xy6、已知 是方程3x-3y=m和5x+y=n的公共解,则m2-3n=.3,2yx2468.若x、y互为相反数,且(x+y+3)(x-y-2)=6,则 x=_ 7.若 ,则x=,y=.2(235)20 xyx y 15952 1.解二元一次方程组的基本思路是 .消元消元相减相减x相加相加y达标测试 2.用加减法解方程组 由与 直接消去 .257232xyxy 3.用加减法解方程组 由与 直接消去 。45286512xyxy4.用加减法解方程组 具体解法如下(1 1)-得x=1;(2)(2)把x=1代入得y=-1;(3 3)其中出现错误的一步是
29、()A(1)B(2)C(3)356257xyxy11xy ADA5、方程2x+3y=8的解()A、只有一个 B、只有两个 C、只有三个 D、有无数个1350 xyxy 3510 xyxy1221yxxy6、下列属于二元一次方程组的是()A.B.C.D.2251xyxy234731yxxyx)(7.用适当的方法解下列的方程组:542322yxyx)(342xyxy55x 解:解:+,得:,得:把把 代入得代入得1x12xy所以方程组的解为所以方程组的解为原方程组可化为原方程组可化为1x 2y 321245xyxy1122x 解:解:+2,得:,得:把把 代入得代入得2x23xy所以方程组的解为所
30、以方程组的解为原方程组可化为原方程组可化为2x 3y 24axbyaxby8.关于x、y的二元一次方程组 2310452xyxy 的解与的解相同,求a、b的值 分析:只要将方程组只要将方程组 的解代入方程组的解代入方程组 ,就可求出就可求出a a,b b的值的值24axbyaxby2310452xyxy2310452xyxy 解方程组,得22xy将代入方程组得222224abab解得1.50.5ab解:1.5,0.5.ab 22xy24axbyaxby734437521xyxymxym9.方程组的解能使成立,求 的值。734437xyxy解方程组,得11xy 将代入方程得,5 12(1)1m
31、解得8m解:11xy 521xym把方程 与 组成方程组,得734xy437xy10.求当m为何值时,方程组 的解互为相反数?并求方程组的解。3522718xymxym3522718yymyym解方程组得其解为所以当m=8时,方程组的解互为相反数22xy解:28ym 2x 方程的解互为相反数xy 把 代入方程组,得xy 11.方程组 的解应为 ,但由于看错了系数a,而得到的解为 ,求m+n+a的值。6220224mxnyaxy 116xy810 xy8106211662mnmn解方程组得解:43mn811,106xxyy是方程的解方程 不含a62mxny可得把 代入第二个方程,得116xy82
32、0 10224a 3a 4mna12.某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解方程组得解:5133xy9952(5)xyxy 设到甲工厂的人数为x人,到乙工厂的人数为y人,则答:到甲工厂的人数是51人,到乙工厂的人数为33人。甲工厂人数乙工厂人数xy抽调前第一次抽调第二次抽调x-9y+9y-5x+5数量关系:第一次抽调:甲工厂人数=乙工厂人数第二次抽调:甲工厂人数=乙工厂人数213.某幼儿园分苹果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?解方程组得解
33、:311xy3241xyxy 设幼儿园有x个小朋友,一共有y个苹果,由题意,得答:幼儿园有3个小朋友。数量关系:(1)小朋友人数3+2=苹果数(2)小朋友人数4-1=苹果数14.一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如下表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?第一次第二次甲货车辆数32乙货车车辆数43累计运货吨数3626解方程组得解:46xy34362326xyxy 设甲货车每辆运货物x吨,乙货车每辆运货物y吨,则货物共有(5x+6y)吨,由题意,得答:这批货物有56吨。565 46 656x
34、y (吨)数量关系:甲货车数甲货车每辆运货数乙货车数乙货车每辆运货数累计运货吨数+=在数学天地里,重要的不是我在数学天地里,重要的不是我们知道什么,而是我们怎么知们知道什么,而是我们怎么知道什么。道什么。毕达哥拉斯毕达哥拉斯期末总复习期末总复习人 教 版 七 年 级 数 学 下 册人 教 版 七 年 级 数 学 下 册情景引入情景引入合作探究合作探究课堂练习课堂练习课堂小结课堂小结达标测试达标测试读书之法,在循序而渐进,熟读而精思。读书之法,在循序而渐进,熟读而精思。实际问题实际问题不等关系不等关系不等式不等式一元一次不等式一元一次不等式一元一次不等式组一元一次不等式组不等式的性质不等式的性质
35、解不等式解不等式解集解集解集解集解集解集数轴表示数轴表示数轴表示数轴表示数轴表示数轴表示解解 法法解解 法法实际应用实际应用知识结构一一.基本概念基本概念:1.不等式不等式:2.不等号不等号:3.不等式的解不等式的解:4.不等式的解集不等式的解集:5.解不等式解不等式:6.一元一次不等式一元一次不等式:7.一元一次不等式组一元一次不等式组:8.一元一次不等式组的解集一元一次不等式组的解集:9.解一元一次不等式组解一元一次不等式组:知识要点回顾二.不等式的性质:(1)不等式的两边都加上(或减去)同一个数或式子,不等号方向不变.(2)不等式的两边都乘上(或除以)同一个正数,不等号方向不变.(3)不
36、等式的两边都乘上(或除以)同一个负数,不等号方向改变.三,规律与方法:1.不等式的解法:2.解不等式组的方法:(与解方程组不同)3.不等式的解集在数轴上的表示:大于向右,小于向左,有等号是实心,无等号是空心.4.求几个不等式的解的公共部分的方法和规律:(1)数轴法(2)口诀法:同大取大,同小取小大小小大中间找大大小小无解了5.用一元一次不等式组解决实际问题的步骤:实际问题设一个未知数列不等式组解不等式组检验解是否符合情况1.如果ab,那么ac bc;如果acb时 如果ambm,那么m 0;如果ambm,那么m 0.DC 考点一考点一:不等式的性质不等式的性质3.3.若若 a ab,b,则下列不
37、等式成则下列不等式成 立的是()。立的是()。A.a-3 A.a-3b-3 B.-2ab-3 B.-2a-2b -2b C.C.ab44 D.c-2aD.c-2a c-2bc-2b4.4.若若ac0bac0b,则,则abcabc与与0 0的大小关的大小关 系是(系是()A.A.abcabc0 B.0 D.0 D.无法确定无法确定考点二考点二:不等式的解与解集不等式的解与解集1、下列说法中,正确的是()A.x=-3是不等式x+41的解。B.x 是不等式-2x-3的解集,C.不等式 x-5的负整数解有无数多个。D.不等式 x7的非正整数解有无数多个。32D2.下列说法中,错误的是().A.不等式
38、x2 的正整数解只有一个。B.-2是不等式 2x-1 0 的一个解。C.不等式-3x9的解集是 x-3。D.不等式 x8的整数解有无数多个。C C提示提示:验证验证解解时常代入,要求时常代入,要求解集解集需解不需解不等式等式3.不等式4-3x0的解集是()4444.3333A xB xC xD x D考点二考点二:不等式的解与解集不等式的解与解集提示提示:验证验证解解时常代入,要求时常代入,要求解集解集需解不需解不等式等式 4.不等式组 的解集是()32xx.2.2.3.23AxBxCxDx C5.不等式组 的解集在数轴上的表示正确的是()1201xx-13A-13B-13D3-1CDA6.一
39、个一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是()A.-1x3 B.-1x3 C.x-1 D.x37将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的3.6和x,则()A.9x10;B.10 x11;C.11x12;D.12x13C6.不等式组 的解集是_.51212xx2x37.不等式(a-1)x1 则a的范围是 ()a-2X-3-1,0 2、不等式组 的非负整数解是_.x2 x5考点三考点三:不等式(组)的特殊解不等式(组)的特殊解方法方法:先求:先求不等式不等式(组组)的的解集解集,再再确确定整数解定整数解
40、问题问题0,1,23.不等式43x2x6的非负整数解是 。4.不等式组 的所有整数解有()个 A、2 B、3 C、4 D、53032xxB方法方法:先求先求不等式不等式(组组)的的解集解集,再再确确定整数解定整数解的问题的问题2-6215115xx(x)y?123x 2y m 1 2x y m-1 ()()解:解得,解:解得,x=m-3,y=5-m由题意得,由题意得,m-3 5-m 2m 8,m 4所以当所以当m 4时,时,x y。)()(2 m2y-x1 12yx3.已知关于x,y的方程组(1)求这个方程组的解(2)当m为何值时,这个方程组的解为x大于1,y不小于-1.解解:(1)由由-得得
41、 41ym 14my由由+得得 21xm12mx所以方程组的解为所以方程组的解为 1214mxmy(2)由题意得由题意得,112114mm 解得,解得,15mm所以不等式组的解集为所以不等式组的解集为:1 x 5已知方程或不等式,求字母的取值范围一般已知方程或不等式,求字母的取值范围一般步骤步骤:(1)(1)先先解方程解方程,求其,求其解解(2)(2)依据依据条件条件,列出,列出不等式组。不等式组。(3)(3)解解不等式组不等式组,求其,求其解集解集。例1:某工人在生产中,经过第一次改进技术,每天所做的零件的个数比原来多10个,因而他在8天内做完的零件就超过200个,后来,又经过第二次技术的改
42、进,每天又多做37个零件,这样他只做4天,所做的零件的个数就超过前8天的个数,问这位工人原先每天可做零件多少个?考点五考点五:利用一元一次不等式(组)解决实际问题利用一元一次不等式(组)解决实际问题解:设这个工人原先每天做解:设这个工人原先每天做x个零件,个零件,根据题意得根据题意得点评点评:利用列不等式组解决实际问题的步骤与列一利用列不等式组解决实际问题的步骤与列一次方程组解应用题的步骤大体相同,不同的是后者次方程组解应用题的步骤大体相同,不同的是后者寻求的是等量关系,列出的是等式,前者寻求的是寻求的是等量关系,列出的是等式,前者寻求的是不等量关系,并且解不等式组所得的结果通常为一不等量关系
43、,并且解不等式组所得的结果通常为一解集,需从解集中找出符合题意的答案解集,需从解集中找出符合题意的答案8(10)2004(37)8(10)xxx 例2.2008年北京奥运会的比赛门票开始接受公众预订下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?比赛项目比赛项目票价(元场)票价(元场)男篮男篮1000足球足球800乒乓球乒乓球500解解:(1)设预订男篮门票设预订男篮门票x张,则乒张,则乒乓球门票(乓球门票(10-x)张,由题意,得)张,由题意,得
44、1000500(10)8000 xx6x 解得解得104x答:可订男篮门票答:可订男篮门票6张,乒乓球门票张,乒乓球门票4张。张。设男篮门票与足球门票都订设男篮门票与足球门票都订a张,则乒乓球门票(张,则乒乓球门票(10-2a)张,由)张,由题意,得题意,得 例2.2008年北京奥运会的比赛门票开始接受公众预订下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票比赛项目比赛项目票价(元场)票价(元场)男篮男篮1000足球足球800乒乓球乒乓球500解解:(2)1000800500(102)8000500(102)1000aaaaa2.5
45、3.75a解得解得由由a为正整数可得为正整数可得a=3(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?答:他能预订男篮门票答:他能预订男篮门票3张,足球门票张,足球门票3张,乒乓球门票张,乒乓球门票4张。张。设男篮门票与足球门票都订设男篮门票与足球门票都订a张,则乒乓球门票张,则乒乓球门票(10-2a)张,由题意,得)张,由题意,得解法二解法二:(2)1020500(102)1000aaa2.55a解得解得由由a为正整数可得为正整数可得a=3或或a=
46、4当当a=3时,总费用为:时,总费用为:31000+3800+4500=7400(元)(元)8000(元)(元)不合题意舍去不合题意舍去答:他能预订男篮门票答:他能预订男篮门票3张,足球门票张,足球门票3张,乒乓球门票张,乒乓球门票4张。张。3.已知不等式4x-a a的正整数解是1,2则a的取值范围是 ;1.若x=3-2a且 (x-3)x-,则a的取值范围是 ;51532.已知|2x-4|+(3x-y-m)2=0且y0 则m的范围是 ;4.若不等式2x+k0的整数是 ;6.不等式(a-1)x1 则a的范围是 。a368 a12K 50,-1a1六六 热身训练热身训练7.不等式 的最小整数解为(
47、)A.-1 B.0 C.2 D.3xxx28132A8.不等式组 的整数解为_。0221042xx-3,-29.已知方程组 的解x与y的和是负数,求k的取值范围。231 5xykxyk 11 7044kk13k 1474kxky在数学天地里,重要的不是我在数学天地里,重要的不是我们知道什么,而是我们怎么知们知道什么,而是我们怎么知道什么。道什么。毕达哥拉斯毕达哥拉斯期末总复习期末总复习人 教 版 七 年 级 数 学 下 册人 教 版 七 年 级 数 学 下 册情景引入情景引入合作探究合作探究课堂练习课堂练习课堂小结课堂小结达标测试达标测试读书之法,在循序而渐进,熟读而精思。读书之法,在循序而渐
48、进,熟读而精思。1 1、统计图有哪些?它们各有什么特点?、统计图有哪些?它们各有什么特点?2 2、扇形统计图用圆表、扇形统计图用圆表示示 ,圆心角的度,圆心角的度数数=,百分比,百分比=。3 3、画频数分布直方图的一般步骤有哪些?、画频数分布直方图的一般步骤有哪些?4 4、画频数分布折线图时需要注意什么?、画频数分布折线图时需要注意什么?5 5、频率、频率=。6 6、什么时候用全面调查?什么时候用抽样调查?、什么时候用全面调查?什么时候用抽样调查?7 7、抽样调查中,什么是总体、个体、样本、样本容量?、抽样调查中,什么是总体、个体、样本、样本容量?知识要点总数(单位1)360 百分比百分比频数
49、/总数频数/总数1001考察全体对象的调查我们常把它称为_调查;考察部分对象的调查称为 调查.2妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,于是妈妈取了一点品尝,这应该属于_ _(填:全面调查或抽样调查)3为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析。在这个问题中,总体是 ,个体是 ,样本是 ,样本容量是 .复习回顾全面抽样抽样调查七年级400名学生的期中数学成绩七年级每一名学生的期中数学成绩抽取的50名学生的数学成绩504在进行数据描述时,要显示每组中的具体数据,应采用 图;要显示部分在总体中所占的百分比,应采用 图;要显示数据的变化
50、趋势,应采用 图;要显示数据的分布情况,应采用 图.5某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92.请你估计该市6万名七年级学生中,身体素质达标的大约有 万人.6一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成()A.10组 B.9组 C.8组 D.7组条形扇形拆线扇形5.52A7大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,18
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。