ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:553KB ,
文档编号:5750626      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5750626.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(直线与椭圆的位置关系练习题目与答案(DOC 10页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

直线与椭圆的位置关系练习题目与答案(DOC 10页).doc

1、直线与椭圆的位置关系练习(2)1. 椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为( ) A4B2 C8 D解:如图所示,设椭圆的另一个焦点为,由椭圆第一定义得,所以,又因为为的中位线,所以,故答案为A2. 若直线与椭圆恒有公共点,求实数的取值范围 解法一:由可得,即解法二:直线恒过一定点当时,椭圆焦点在轴上,短半轴长,要使直线与椭圆恒有交点则即当时,椭圆焦点在轴上,长半轴长可保证直线与椭圆恒有交点即综述:解法三:直线恒过一定点要使直线与椭圆恒有交点,即要保证定点在椭圆内部即3. 已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程3.

2、 解:(1)把直线方程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为4. 已知椭圆的左右焦点分别为F1,F2,若过点P(0,-2)及F1的直线交椭圆于A,B两点,求ABF2的面积4. 解法一:由题可知:直线方程为由可得,解法二:到直线AB的距离由可得,又解法三:令则,其中到直线AB的距离由可得,评述在利用弦长公式(k为直线斜率)或焦(左)半径公式时,应结合韦达定理解5. 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长5. 分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还

3、可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为由直线方程与椭圆方程联立得:设,为方程两根,所以, 从而6. 已知中心在原点,长轴在x轴上的椭圆的两准线间的距离为2,若椭圆被直线x+y+1=0截得的弦的中点的横坐标是,求椭圆的方程6. 解法一:令椭圆方程为,由题得:,由可得,又即 椭圆方程为解法二:令椭圆方程为,由题得:,由作差得又即 椭圆方程为7. 已知长方形ABCD, AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.()求以A、B为焦点,且过C、D两点的椭圆的标准方程;OABCD图8()过

4、点P(0,2)的直线交()中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.7. 解析 ()由题意可得点A,B,C的坐标分别为.设椭圆的标准方程是.椭圆的标准方程是()由题意直线的斜率存在,可设直线的方程为.设M,N两点的坐标分别为联立方程: 消去整理得, 有若以MN为直径的圆恰好过原点,则,所以,所以,即所以,即得所以直线的方程为,或.所以存在过P(0,2)的直线:使得以弦MN为直径的圆恰好过原点. 8. 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OPOQ,|PQ|=,求椭圆方程 8.解 设椭圆

5、方程为mx2+ny2=1(m0,n0),P(x1,y1),Q(x2,y2)由 得(m+n)x2+2nx+n1=0,=4n24(m+n)(n1)0,即m+nmn0,由OPOQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0,+1=0,m+n=2 又22,将m+n=2,代入得mn=由、式得m=,n=或m=,n=故椭圆方程为+y2=1或x2+y2=1 9. 椭圆与直线交于、两点,且,其中为坐标原点(1)求的值;(2)若椭圆的离心率满足,求椭圆长轴的取值范围 9. (1)设,由OP OQ x 1 x 2 + y 1 y 2 = 0 又将,代入化简得 . (2) 又由(1)知,长轴 2

6、a .10.设直线过点P(0,3),和椭圆顺次交于A、B两点,若试求l的取值范围.10 。解:当直线垂直于x轴时,可求得;当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得解之得 因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.当时,所以 .由 , 解得 ,所以 ,yO.Mx.综上 .11.已知椭圆的一个焦点为F1(0,-2),对应的准线方程为,且离心率e满足:成等差数列。(1)求椭圆方程;(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线平分,若存在,求出l的倾斜角的范围;若不存在,请说明理由。10.(1)解:依题意e , a3,c2,b1, 又F1(0

7、,2),对应的准线方程为 椭圆中心在原点,所求方程为 (2)假设存在直线l,依题意l交椭圆所得弦MN被平分直线l的斜率存在。 设直线l:ykxm由消去y,整理得 (k29)x22kmxm290l与椭圆交于不同的两点M、N,4k2m24(k29)(m29)0 即m2k290设 M(x1,y1),N(x2,y2) 把代入式中得,k或k直线l倾斜角12. 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再利用椭圆定义求解(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为原点建立直角坐标系设点坐标为,由,知点的轨迹是以、

8、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)13. 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程11. 分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法14. 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程 12. 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为: (椭圆内部分)(3)将代入得所求轨迹方程为: (椭圆内部分)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|