1、%对数与对数函数同步测试一、选择题:1的值是( ) A B1 C D22若log2=0,则x、y、z的大小关系是( ) Azxy Bxyz CyzxDzyx3已知x=+1,则log4(x3x6)等于( )A. B. D.4已知lg2=a,lg3=b,则等于( )A BCD :5已知2 lg(x2y)=lgxlgy,则的值为 ( )A1 B4 C1或4 D4 或 6.函数y=的定义域为( )A(,) B1,C( ,1D(,1)7已知函数y=log (ax22x1)的值域为R,则实数a的取值范围是( ) Aa 1 B0a 1 C0a1 D0a1 8.已知f(ex)=x,则f(5)等于( )Ae5
2、B5eCln5 Dlog5eOxyOxyOxyO|xy9若的图像是( )A B C D10若在区间上是增函数,则的取值范围是( )、A BCD 11设集合等于( )AB CD12函数的反函数为()A BCD 二、填空题:13计算:log2.56.25lgln= 14函数y=log4(x1)2(x1的反函数为 15已知m1,试比较(lgm)与(lgm)的大小 16函数y =(logx)2logx25 在 2x4时的值域为 三、解答题:17已知y=loga(2ax)在区间0,1上是x的减函数,求a的取值范围.18已知函数f(x)=lg(a21)x2(a1)x1,若f(x)的定义域为R,求实数a的取
3、值范围.19已知f(x)=x2(lga2)xlgb,f(1)=2,当xR时f(x)2x恒成立,求实数a的值,并求此时f(x)的最小值(20设0x1,a0且a1,试比较|loga(1x)|与|loga(1x)|的大小。21已知函数f(x)=loga(aax)且a1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称。*22在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a1、a2,其中a1,求ABC面积的最大值参考答案一、选择题: ADBCB CDCBA AB 二、填空题:13.,=12x(xR), 15. (l
4、gm)(lgm),16.三、解答题:17.解析:先求函数定义域:由2ax0,得ax2,又a是对数的底数,a0且a1,x由递减区间0,1应在定义域内可得1,a2,又2ax在x0,1是减函数y=loga(2ax)在区间0,1也是减函数,由复合函数单调性可知:a1,1a218、解:依题意(a21)x2(a1)x10对一切xR恒成立当a210时,其充要条件是:解得a1或a,又a=1,f(x)=0满足题意,a=1,不合题意所以a的取值范围是:(,1(,)19、解析:由f(1)=2 ,得:f(1)=1(lga2)lgb=2,解之lgalgb=1,=10,a=10b又由xR,f(x)2x恒成立知:x2(lg
5、a2)xlgb2x,即x2xlgalgb0,对xR恒成立,由=lg2a4lgb0,整理得(1lgb)24lgb0,即(lgb1)20,只有lgb=1,不等式成立即b=10,a=100f(x)=x24x1=(2x)23,当x=2时,f(x) min=320.解法一:作差法|loga(1x)|loga(1x)|=| |=(|lg(1x)|lg(1x)|)0x1,01x11x上式=(lg(1x)lg(1x)=lg(1x2)由0x1,得,lg(1x2)0,lg(1x2)0,|loga(1x)|loga(1x)|解法二:作商法=|log(1x)(1x)|0x1,01x1x,|log(1x)(1x)|=l
6、og(1x)(1x)=log(1x)由0x1,1x1,01x210(1x)(1x)1,1x00log(1x) log(1x)(1x)=1|loga(1x)|loga(1x)|解法三:平方后比较大小loga2(1x)loga2(1x)=loga(1x)loga(1x)loga(1x)loga(1x)=loga(1x2)loga=lg(1x2)lg0x1,01x21,01lg(1x2)0,lg0loga2(1x)loga2(1x),即|loga(1x)|loga(1x)|解法四:分类讨论去掉绝对值当a1时,|loga(1x)|loga(1x)|=loga(1x)loga(1x)=loga(1x2)
7、01x11x,01x21loga(1x2)0,loga(1x2)0*当0a1时,由0x1,则有loga(1x)0,loga(1x)0|loga(1x)|loga(1x)|=|loga(1x)loga(1x)|=loga(1x2)0当a0且a1时,总有|loga(1x)|loga(1x)|21.解析:(1)定义域为(,1),值域为(,1)(2)设1x2x1a1,于是aa则loga(aa)loga(a)即f(x2)f(x1)f(x)在定义域(,1)上是减函数(3)证明:令y=loga(aax)(x1),则aax=ay,x=loga(aay)f1(x)=loga(aax)(x1)故f(x)的反函数是其自身,得函数f(x)=loga(aax)(x1图象关于y=x对称22.解析:根据已知条件,A、B、C三点坐标分别为(a,log2a),(a1,log2(a1),(a2,log2(a2),则ABC的面积S=因为,所以