ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:1.77MB ,
文档编号:5790315      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5790315.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(ziliao2023)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高一函数的奇偶性课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高一函数的奇偶性课件.ppt

1、 在日常生活中,我们可以观察到在日常生活中,我们可以观察到许多对称现象,如:美丽的蝴蝶,盛许多对称现象,如:美丽的蝴蝶,盛开的花朵,六角形的雪花晶体,以及开的花朵,六角形的雪花晶体,以及建筑物和它在水中的倒影建筑物和它在水中的倒影.四川曹家大院一景曹家多子院大门二道门水镜台曹家大院某院晋祠鼓楼晋祠硕亭太谷民居门墩石狮子xyOxyO f(x)=x2 f(x)=|x|x -2-1 012 y 41014 x -2-1 012 y 21012 问题:问题:1、对定义域中的每一个、对定义域中的每一个x,-x是否也在定义域内?是否也在定义域内?2、f(x)与与f(-x)的值有什么的值有什么关系?关系?函

2、函数数y=f(x)的的图图象象关关于于y轴对称轴对称1、对对定定义义域中的每一域中的每一 个个x,-x是也在定是也在定义义 域域内内;2、都有都有f(x)=f(-x)如果如果对对于函于函数数f(x)的定的定义义域域为为A。如果如果对对任意任意的的xA,都有都有 f(-x)=f(x),那那么称么称函函数数y=f(x)是偶函是偶函数数。(1)下列说法是否正确,为什么?)下列说法是否正确,为什么?(1)若)若f(2)=f(2),则函数,则函数 f(x)是偶函数是偶函数(2)若)若f(2)f(2),则函数,则函数 f(x)不是偶函数不是偶函数(2)下列函数是否为偶函数,为什么?)下列函数是否为偶函数,

3、为什么?。(A)3,2,1|24 xxxy(B)(C)0101xxxxy(D)0,1 xRxxy且且 观察下面两个函数填写表格观察下面两个函数填写表格-30 xy123-1-2-1123-2-30 xy123-1-2-1123-2-3f(x)=x1()f xx3210-1-2-3-1x-3-2012 3f(-3)=-3=0 xy123-1-2-1123-2-3f(-x)-f(x)f(x)=xf(-1)=-1f(-2)=-2=x-x表(表(3)-f(1)=-f(2)-f(3)=f(x)=x0 xy123-1-2-1123-2-31()f xx f(-3)=-f(3)f(-1)=-1=-f(1)f

4、(-2)=-f(2)f(-x)=-f(x)13210-2-3x1()f xx-113121213-11213表(表(4)函数函数y=f(x)的图象的图象关于原点对称关于原点对称1、对定义域中的每一、对定义域中的每一 个个x,-x是也在定义是也在定义 域内;域内;2、都有、都有f(-x)=-f(x)如果对于函数如果对于函数f(x)的定义域为的定义域为A。如果对如果对任意任意一个一个xA,都有都有 f(-x)=-f(x),那么称函数那么称函数f(x)是奇函数是奇函数。判定函数奇偶性基本方法判定函数奇偶性基本方法:定义法定义法:先看先看定义域定义域是否是否关于原点对称关于原点对称,再看再看f(-x)

5、与与f(x)的关系的关系.图象法图象法:看图象是否关于原点或看图象是否关于原点或y轴对称轴对称.如果一个函数如果一个函数f(x)是奇函数或偶函是奇函数或偶函数,那么我们就说函数数,那么我们就说函数f(x)具有具有奇偶奇偶性性.奇函数奇函数 偶函数偶函数 函数可划分为函数可划分为四类四类:既奇又偶函数既奇又偶函数 非奇非偶函数非奇非偶函数说明:说明:1、根据函数的奇偶性、根据函数的奇偶性f(x)=0 xR非奇非偶函数非奇非偶函数0 xy123-1-2-1123-2-3如:如:0 xy123-1-2-1123-2-3y=3x+1y=x2+2x0 xy123-1-2-1123-2-3如:如:y=02

6、 2、奇、偶函数定义的逆命题也成立、奇、偶函数定义的逆命题也成立,即,即 若若f(x)f(x)为奇函数,则为奇函数,则f(-x)=-f(x)有成立有成立.若若f(x)f(x)为偶函数,则为偶函数,则f(-x)=f(x)有成立有成立.3、奇、偶函数性质:、奇、偶函数性质:偶函数的偶函数的 定义域关于原点对称定义域关于原点对称 图象关于图象关于y轴对称轴对称 奇函数的奇函数的 定义域关于原点对称定义域关于原点对称 图象关于原点对称。图象关于原点对称。如果一个函数是偶如果一个函数是偶函数函数,则则它的图象它的图象关于关于y轴对称轴对称。y=x2偶函数的图像特征偶函数的图像特征反过来,反过来,如果一个

7、函数的图如果一个函数的图象关于象关于y轴对称,轴对称,则则这个函数为偶函这个函数为偶函数数。2()f xx1,2x,是偶函数吗?是偶函数吗?问题:问题:0 x123-1-2-3123456y不是。不是。性质:偶函数的定义域关于原点对称性质:偶函数的定义域关于原点对称解解:y=x2例:例:性质:性质:偶函数在关于原点对称的区间上单调性相反。偶函数在关于原点对称的区间上单调性相反。(),1,f xx x 问题:问题:是奇函数吗?是奇函数吗?-30 xy123-1-2-1123-2-3解:解:不是。不是。性质:奇函数的定义域关于原点对称。性质:奇函数的定义域关于原点对称。性质:性质:奇函数在关于原点

8、对称的区间上单调性一致奇函数在关于原点对称的区间上单调性一致例:例:y=x30六、应用六、应用:例例1 判断下列函数的奇偶性判断下列函数的奇偶性 1.y=-2x2+1,xR;2.f(x)=-xx;3.y=-3x+1;4.f(x)=x2,x-3,-2,-1,0,1,2;5.y=0,x-1,1;xxxxf 11)1()(.622x11x)x(f.7 是偶函数是偶函数是奇函数是奇函数不是奇函数也不是偶函数不是奇函数也不是偶函数非奇非偶函数非奇非偶函数非奇非偶函数非奇非偶函数亦奇亦偶函数亦奇亦偶函数既是奇函数也是偶函数既是奇函数也是偶函数例例3 如图是奇函数如图是奇函数y=f(x)图象图象的一部分,试

9、画出函数在的一部分,试画出函数在y轴轴左边的图象。左边的图象。xy0例例4 已知已知y=f(x)是是R上的奇函数,当上的奇函数,当x0时,时,f(x)=x2+2x-1,求函数的表达式。,求函数的表达式。是是奇奇函函数数、证证明明函函数数例例 )0()0()(222xxxxxxxf练习练习:判断下列函数的奇偶性:2541)()4(1)()3()()2()()1(xxfxxxfxxfxxf (1)解:定义域为R f(-x)=(-x)4=f(x)即f(-x)=f(x)f(x)偶函数(2)解:定义域为R f(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)f(x)奇函数(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)f(x)奇函数(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x)即f(-x)=f(x)f(x)偶函数

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|