ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:412KB ,
文档编号:5790977      下载积分:16 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5790977.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(hyngb9260)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(第三节 隐函数的导数与取对数求导法.ppt)为本站会员(hyngb9260)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

第三节 隐函数的导数与取对数求导法.ppt

1、7:由方程:由方程 所确定的隐函数所确定的隐函数y的导数的导数)tan(yxxydydx/.8:cos1,nyxx xy设则二:求下列函数的导数二:求下列函数的导数:32210.1xxe1:y=x42:sin3yxx3:sin(31)1 2yxx4:lnsin(25)yx335:2arctan2xyxx6:yx x x x8:lnabxyabx2537:xxxyx23(1)10:(1)xxyx2339:9log cos(5 3)xxayx三:设函数三:设函数21()1xxf xaxbx为了使函数为了使函数 在在 处连续且可导,处连续且可导,应取什么值?应取什么值?()f x1x,a b(1)(

2、sin2)yfx四:设四:设 可导,求下列函数可导,求下列函数 的导数的导数()f xydydx22(2)(sin)(cos)yfxfx处的切线方程。在五:求椭圆4sincosttbytax第三节第三节 隐函数的求导与隐函数的求导与 取对数求导法取对数求导法一、隐函数的导数一、隐函数的导数定义定义:.)(称为隐函数称为隐函数由方程所确定的函数由方程所确定的函数xyy .)(形式称为显函数形式称为显函数xfy 0),(yxF)(xfy 隐函数的显化隐函数的显化问题问题:隐函数不易显化或不能显化如何求导隐函数不易显化或不能显化如何求导?隐函数求导法则隐函数求导法则:用复合函数求导法则直接对方程两边

3、求导用复合函数求导法则直接对方程两边求导.例例1 1.,00 xyxdxdydxdyyeexy的导数的导数所确定的隐函数所确定的隐函数求由方程求由方程解解,求导求导方程两边对方程两边对x0 dxdyeedxdyxyyx解得解得,yxexyedxdy ,0,0 yx由原方程知由原方程知000 yxyxxexyedxdy.1 例例2 2.,)23,23(,333线通过原点线通过原点在该点的法在该点的法并证明曲线并证明曲线的切线方程的切线方程点点上上求过求过的方程为的方程为设曲线设曲线CCxyyxC 解解,求导求导方程两边对方程两边对xyxyyyx 333322)23,23(22)23,23(xyx

4、yy .1 所求切线方程为所求切线方程为)23(23 xy.03 yx即即2323 xy法线方程为法线方程为,xy 即即显然通过原点显然通过原点.例例3 3.)1,0(,144处的值处的值在点在点求求设设yyxyx 解解求导得求导得方程两边对方程两边对x)1(04433 yyyxyx得得代入代入1,0 yx;4110 yxy求导得求导得两边再对两边再对将方程将方程x)1(04)(122123222 yyyyyxyx得得4110 yxy,1,0 yx代入代入.16110 yxy二、对数求导法二、对数求导法观察函数观察函数.,)4(1)1(sin23xxxyexxxy 方法方法:先在方程两边取对数

5、先在方程两边取对数,然后利用隐函数的求导然后利用隐函数的求导方法求出导数方法求出导数.-对数求导法对数求导法适用范围适用范围:.)()(的情形的情形数数多个函数相乘和幂指函多个函数相乘和幂指函xvxu例例4 4解解 142)1(3111)4(1)1(23 xxxexxxyx等式两边取对数得等式两边取对数得xxxxy )4ln(2)1ln(31)1ln(ln求导得求导得上式两边对上式两边对 x142)1(3111 xxxyy.,)4(1)1(23yexxxyx 求求设设例例5 5解解.),0(sinyxxyx 求求设设等式两边取对数得等式两边取对数得xxylnsinln 求导得求导得上式两边对上

6、式两边对xxxxxyy1sinlncos1 )1sinln(cosxxxxyy )sinln(cossinxxxxxx 一般地一般地)0)()()()(xuxuxfxv)()(1)(lnxfdxdxfxfdxd 又又)(ln)()(xfdxdxfxf )()()()(ln)()()()(xuxuxvxuxvxuxfxv )(ln)()(lnxuxvxf 三、由参数方程所确定的函数的导数三、由参数方程所确定的函数的导数.,)()(定的函数定的函数称此为由参数方程所确称此为由参数方程所确间的函数关系间的函数关系与与确定确定若参数方程若参数方程xytytx 例如例如 ,22tytx2xt 22)2(

7、xty 42x xy21 消去参数消去参数问题问题:消参困难或无法消参如何求导消参困难或无法消参如何求导?t),()(1xttx 具有单调连续的反函数具有单调连续的反函数设函数设函数)(1xy ,0)(,)(),(ttytx 且且都可导都可导再设函数再设函数由复合函数及反函数的求导法则得由复合函数及反函数的求导法则得dxdtdtdydxdy dtdxdtdy1 )()(tt dtdxdtdydxdy 即即,)()(中中在方程在方程 tytx,)()(二阶可导二阶可导若函数若函数 tytx)(22dxdydxddxyd dxdtttdtd)()()(1)()()()()(2tttttt .)()

8、()()()(322tttttdxyd 即即例例6 6解解dtdxdtdydxdy ttcos1sin taatacossin 2cos12sin2 tdxdy.1.方方程程处的切线处的切线在在求摆线求摆线2)cos1()sin(ttayttax.),12(,2ayaxt 时时当当 所求切线方程为所求切线方程为)12(axay)22(axy即即例例7 7解解.sincos33表示的函数的二阶导数表示的函数的二阶导数求由方程求由方程 taytaxdtdxdtdydxdy)sin(cos3cossin322ttatta ttan )(22dxdydxddxyd)cos()tan(3 tatttatsincos3sec22 tatsin3sec4 三、小结三、小结隐函数求导法则隐函数求导法则:直接对方程两边求导直接对方程两边求导;对数求导法对数求导法:对方程两边取对数对方程两边取对数,按隐函数的求按隐函数的求导法则求导导法则求导;参数方程求导参数方程求导:实质上是利用复合函数求导法则实质上是利用复合函数求导法则;练练 习习 题题二:求下列方程所确定的隐函数二:求下列方程所确定的隐函数y的导数的导数yxey 11:)tan(2yxy:处的切线方程。在四:求椭圆4sincosttbytax

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|