1、1月大数据精选模拟卷01(扬州专用)数 学本卷满分150分,考试时间120分钟。一、选择题 (本大题共10小题,每小题3分,共30分每小题只有一个选项是符合题意的)1.8的倒数是()AB8C8D2.下列运算正确的是()A6a5a1Ba2a3a5C(2a)24a2Da6a2a33.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A(4,5)B(5,4)C(4,5)D(5,4)4.下列说法正确的是()A明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B抛掷一枚质地均匀的硬币两次,必有一次正面朝上C了解一批花炮的燃放质量,应采用抽样调查方
2、式D一组数据的众数一定只有一个5.如图是一个几何体的表面展开图,这个几何体是( )ABCD6.如图,正五边形ABCDE内接于O,P为上的一点(点P不与点D重合),则CPD的度数为A30B36C60D727.如图,在网格中,小正方形的边长为1,的顶点都是格点,则的值为( )ABC5D8.如图,四边形 是边长为1的正方形,点 是射线 上的动点(点 不与点 ,点 重合),点 在线段 的延长线上,且 ,连接 ,将 绕点 顺时针旋转90得到 ,连接 .设 ,四边形 的面积为 ,下列图象能正确反映出 与 的函数关系的是( ) A.B.C.D.二填空题(本大题共10小题,每小题2分,共20分)9.已知一天有
3、86400秒,一年按365天计算共有31536000秒,31536000用科学记数法表示为: 10.已知mx=3,my=2,那么mx2y的值是_11.函数y=中自变量x的取值范围是 .12.若a-2b=3,则9-2a+4b的值为 _13.在ABC中,C=90,tanA=,则cosB=_14.已知x=是关于x的方程的一个根,则m_15.如图,AM是圆O的直径,四边形ABNM是矩形,D是圆O上一点,于点C,已知BC15,圆O的半径为30,则弧AD的长度是_.16.如图,O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角BOD的大小为 度17.如图,RtABC中,ABC90,
4、根据尺规作图的痕迹判断以下结论错误的是()ADBDEBABAECEDCBACDDACC18.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,都是菱形,点A1,A2,A3,都在x轴上,点C1,C2,C3,都在直线yx+上,且C1OA1C2A1A2C3A2A360,OA11,则点C6的坐标是 三、解答题(本大题共10小题,共96分)19.(8分)计算:(1) ; (2);20.(8分)解方程组21.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部
5、门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是 2
6、3.(10分)某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?24.(10分)如图,中,(1)作点关于的对称点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,连接,交于点求证:四边形是菱形;取的中点,连接,若,求点到的距离25.(10分)如图,D是ABC的BC边上一点,连接AD,作ABD的外接圆,将ADC沿直线AD折叠,点C
7、的对应点E落在BD上(1)求证:AE=AB(2)若CAB=90,cosADB=,BE=2,求BC的长26.(10分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形相似四边形对应边的比叫做相似比(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”)四条边成比例的两个凸四边形相似;( 命题)三个角分别相等的两个凸四边形相似;( 命题)两个大小不同的正方形相似( 命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,ABCA1B1C1,BCDB1C1D1,求证:四边形ABCD与四边形A1B1C1D1
8、相似(3)如图2,四边形ABCD中,ABCD,AC与BD相交于点O,过点O作EFAB分别交AD,BC于点E,F记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值27.(12分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校已知甲步行的速度比乙步行的速度每分钟快5米设甲步行的时间为x(分),图1中线段OA和折线BCD分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离
9、s(米)与甲步行时间x(分)的函数关系的图象(不完整)根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25x30时s关于x的函数的大致图象(温馨提示:请画在答题卷相对应的图上)28.(12分)如图,在矩形ABCD中,AD=acm,AB=bcm(ab4),半径为2cm的O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着ABCD的方向匀速移动,当点P到达D点时停止移动O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与O同时开始移动,同时停止移动(即同时到达各自的终止位置)(1)如图,点P从ABCD,全程共移动了 cm(用含a、b的代数式表示);(2)如图,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图,已知a=20,b=10,是否存在如下情形:当O到达O1的位置时(此时圆心O1在矩形对角线BD上),DP与O1恰好相切?请说明理由
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。