ImageVerifierCode 换一换
格式:PPTX , 页数:36 ,大小:1,021.02KB ,
文档编号:5804491      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5804491.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(ziliao2023)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(量子化学与群论基础6课件.pptx)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

量子化学与群论基础6课件.pptx

1、6.3 Many-electron atoms 1 The Schrdinger equation of many-electron atoms(Born-Oppenheimer Approximation)2ji2ji2jiijzzyyxxr Unfortunately,precise solutions are not available through the Schrdinger equation,even for the simplest many-electron,helium,becauseNjiijNiiNiirerZem212122212HEH Independent par

2、ticle model021jiijNerThe Schrdinger equationErZemNiiNii121222Separation of variables Nn3213,2,1NjiijNiiNiirerZem2121222HiiirZem2222HNiitotalEEEEEE1n321-NNH.22H11HNNNN22221111EEE),()(),(,mllnmlnYrRrRnZEn22 Mean field model iiiiii22i22ErVrZeAn electron at a distance r from the nucleus experiences a Co

3、ulombic repulsion from all the electrons within a sphere of radius r and which is equivalent to a point negative charge located on the nucleus.i2iirerUiiii2i22ErZRnZEn22,n=1,2,3,221,22,11,22,11,22,1Symmetric,Bosons 1,22,1Antisymmetric,Fermions The Pauli principle All electronic wavefunctions must be

4、 antisymmetric under the interchange of any two electrons.2 Identical particles and the Pauli principle Identical particlesIdentical particles cannot be distinguished by means of any intrinsic properties.Slater determinant NNNNNNNNNNNNNN221122112211!1,2,1222222111111)(!1N Normalization constant(i)1,

5、22,1(ii)No two electrons in an atom can have the same values for all four quantum numbers.4 Electron configurations The Pauli exclusion principleNo two electrons in an atom can have the same values for all four quantum numbers.Ground state electron configuration Aufbau principle Hunds ruleElectrons

6、occupy the orbitals of a subshell singly until each orbital has one electron.p6,d10,f14p3,d5,f7p0,d0,f0 Atomic units 1a.u mass=the mass of electron m=9.1091028g 1a.u charge=the charge of proton e=1.60210-19C 1a.u length=Bohr radiusm100.52910-220mea 1a.u energy =e2/a0 =27.2eVRererem2b2a2222HE HThe H2

7、+has two protons and one electron and can be described using the Schrdinger equation 5 Molecules 5.1 Hydrogen Molecule Ion(H2+)The Schrdinger equation of H2+The Schrdinger equation of H2+in a.u The Hamiltonian Rererem2b2a2222Ha.uRrr11121Hba2 Schrdinger equationERrr11121ba2 The variation theorem The

8、variation theorem for a linear expansiond*dH*E The estimated wave function The estimated wave function has to satisfy some conditions.iiccccNN2211Note that we have to use the correct Hamiltonian for the system,but we do not know how to solve the Schrdinger equation for this Hamiltonian.The variation

9、 theorem tells us that:EThe expectation value of the energy is always higher than the correct result.Molecular Orbital-a Linear Combination of Atomic Orbitals LCAO-MO Expectation value of the energyENiccccfE,21The problem is a maximum-minimum problem in calculus.We must have:021NicEcEcEcE The wave f

10、unction The solution of Schrodinger equation of H2+ERrr11121ba2barrececcc1121b2a1 LCAO-MOR,ra,b1erba2121Hrararsaeea11001 The estimated wave function If R,ra,thena1are The energy of H2+d*dH*Ebarrececcc1121b2a1 ddH2b2a1b2a1b2a1ccccccEdddddHdHdHdH2b22ab21ba212a21bb22ab21ba21aa21ccccccccccccAll the inte

11、grals above can in principle be evaluated.We know the functions and the operator.We will just give them names:dHaaaaHdHbaabHdHabbaHdHbbbbHdbaabSdabbaS1dd2b2abbaaSSso22ba21ab2121bb22ba21ab21aa21cSccScccHcHccHccHcE,0,021cEcE002bb2baba2abab1aacEHcESHcESHcEHThese equations are called linear homogeneous

12、equations.0bbbabaababaaEHESHESHEHThe secular determinantHaa=Hbb,Hab=Hba,Sab=Sba,and02abab2aaESHEHababaa11SHHE c1=c2 The important question is whether there is a solution other than the trivial solution.There is.The wave function disappears(the trivial solution)for all values of except for the values

13、 of that satisfy the determinant equation:ababaa21SHHE c1=-c2 Approximate wavefunctionsolve the equation for E1ba11 cNormalizationbaab1221Ssolve the equation for E2ba12 cSoababaa11SHHEbaab1221Sababaa21SHHEbaab2221Sbaab2221SNormalization The integrals Sab,Haaand Hab(i)Sabthe overlap integral dbaabSRe

14、RRS131d2baabbr-be1ar-ae1R 0,so Sab 0.If R=0,Sab=1;R =,Sab=0.RabeRRdRdS231(ii)HaaCoulomb integral dHaaaaHar-ae1aaRaaaEJEeREH211(iii)Habexchange integral(integral)dHbaabHRabeRRRH12167612R 0,so Hab 0,HabR,Hab,ar-ae1br-be1Sab1,E1=Haa+Hab=+,E2=Haa-Hab=-HaaEa,so E1=Ea+,E2=Ea-ababaa11SHHEababaa21SHHE Discu

15、ssion(i)The energy of 1 and 2The calculated and experimental molecular potential energy curves for a hydrogen molecule-ion.(ii)Bonding orbital 1ba1221Sba2b2aab212221SThe electron density calculated by forming the square of the wavefunction.Note the accumulation of electron density in the internuclea

16、r region.The boundary surface of a(orbital encloses the region where the electrons that occupy the orbital are most likely to be found.Note that the orbital has cylindrical symmetry.(iii)Antibonding orbital 2ba2b2aab222221S2122SabA partial explanation of the origin of bonding and antibonding effects

17、.(a)In a bonding orbital,the nuclei are attracted to the accumulation of electron density in the internuclear region.(b)In an antibonding orbital,the nuclei are attracted to an accumulation of electron density outside the internuclear region.5.2.Molecular orbital theory(MO theory)1.The molecular Ham

18、iltonianA molecule consists of number of electrons and nuclei.The molecular Hamiltonian operator has a complicated form.=(1,2,N):EHPbaabbaNjiijPaiaiaNiiRZZrrZ2112121H2(Within the Born-Oppenheimer approximation)Main approximation of ab initio MO theory the Born-Oppenheimer approximationThe orbital ap

19、proximationNon-relativity approximation 2.The molecular wavefunctions(molecular orbitals)So lets consider a simpler problem,involving the one-electron hamiltonian NN213,2,1Separation of variablesiiiihapeaiVVrh1212Ekji.|H|ihH (1,2,3N)EH NNNNNNNNNNNNNN221122112211!1),2,1(222222111111(1,2,N)=det(1)(1)(

20、2)(2)(N)(N)3.Variational parameterNiiiic|iiCC*D,or D=CC D is called the density matrix,a product of AO-MO coefficient matrices4.Hartree-Fock equationsLets look at a general example of functional variation Writing the energy as we want E=0,so Thus It is clear that this can be written as a matrix prod

21、uct,and is in fact an eigenvalue equation in the form H c=S c Ewe can rewrite the Hartree-Fock equations as Using the fact that is diagonal,this can be written as the matrix product F C=S C www.adi.uam.esDocsKnowledgeFundamental_Theoryhfhf.htmlCapabilities of ab initio quantum chemistryCan calculate

22、 wavefunctions and detailed descriptions of molecular orbitals Can calculate atomic charges,dipole moments,multipole moments,polarisabilities,etc.Can calculate vibrational frequencies,IR and Raman intensities,NMR chemical shifts Can calculate ionisation energies and electron affinities Can include t

23、he electrostatic effects on solvation Can calculate the geometries and energies of equilibrium structures,transition structures,intermediates,and neutral and charged species Can calculate ground and excited states Can handle any electron configuration Can handle any element Can optimise geometries 5

24、.3 The Huckel Moleculor Orbital method(HMO)HMO deal with conjugated molecules.Butadiene,e.g.:61s+4(1s22s22px12py12pz0)=26 AOHMO approximation:4 pz.In his approach,The orbitals are treated separately from the orbitals,and the latter form a rigid framework that determine the shape of the molecule.Huck

25、el approximation IHMO is suggested by Eric Hckel in 1931.Butadiene44332211cccc414 pz of C atomsijijjiijijjiccccEddHddH2EHV2i22H The energy and coefficients satisfy the following equations:000044444343432424214141434343333323232131314242432323222221212141414313132121211111cESHcESHcESHcESHcESHcESHcESH

26、cESHcESHcESHcESHcESHcESHcESHcESHcESHdjiijSdHjiijHlet The best molecular orbitals are those which minimise the total energy.This is achieved by imposing the condition::01cE02cE03cE04cE Huckel approximation II:neighbours-nonj,i,0neighbours j,i,=j=i ,=ijHji0,ji,1ijSEEEE0000000 non-trivial solutions:044

27、44434342424141343433333232313124242323222221211414131312121111ESHESHESHESHESHESHESHESHESHESHESHESHESHESHESHESH These values,called the non-trivial solutions to these equations,occur when:xEletxE0100110011001xxxxThis determinant can be easily multiplied out to give:x4-3 x2+1=0618.1618.0618.0618.10114

28、32122xxxxxxxx1=0.37171+0.60152+0.60153+0.371742=0.60151+0.371720.371730.601543=0.601510.371720.37173+0.601544=0.371710.60152+0.601530.3717462.162.062.062.14321EEEE 0,so E1 E2 E3 E4We obtain four values of E,which is reasonable since we expect to find four molecular orbitals.Delocalization energyTota

29、l energy E=2E1+2E2=2(+1.62)+2(+0.62)=4+4.48Energy levelsOccupied orbitalUnfilled orbitalC=C C=C0100100001001xxxxE=4+4E-E=0.48Frontier orbitalsThe highest occupied molecular orbital,HOMOThe lowest unfilled molecular orbital,LUMOThe frontier orbitals are important because they are largely responsible for many of the chemical and spectroscopic properties of the molecule.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|