ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:216.15KB ,
文档编号:5814657      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5814657.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(刘殿科)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2022年中考数学压轴题答案解析.docx)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2022年中考数学压轴题答案解析.docx

1、2022年中考数学压轴题1如图1,在平面直角坐标系xOy中,直线l:y=12x+m与x轴、y轴分别交于点A和点B(0,1),抛物线y=12x2+bx+c经过点B,且与直线l的另一个交点为C(4,n)(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0t4)DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),点H是直线BC上横坐标为3的点若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;在p取最大值时,有一动点Q从点H出发,以每秒v个单位的速度沿射线HB运动到I点,然后以每秒255v个单位的速度从点I运动到点D,若要点Q所用时间最少直接写

2、出点I的坐标;(3)把直线BC绕着点A逆时针旋转45,得到直线l,点M是位于x轴上方的直线l上的一动点,是否存在点M,使OMAABO?若存在,请求出M点坐标:如果不存在,请说明理由解:(1)直线l:y=12x+m过点B(0,1)m1,直线l:y=12x1点C(4,n)在直线l上n=12411抛物线y=12x2+bx+c经过点B、Cc=-18+4b+c=1 解得:b=-32c=-1抛物线解析式为y=12x2-32x1(2)D(t,12t2-32t1),DEy轴交直线l于点EE(t,12t1)DE=12t1(12t2-32t1)=-12t2+2ty=12x10时,x2A(2,0),OA2AB=22

3、+12=5sinABO=OAAB=25=255,cosABO=OBAB=15=55四边形DFEG是矩形DFEAOB90DEy轴有DEFABOsinDEF=DFDE=255,cosDEF=EFDE=55DF=255DE,EF=55DEp2(DF+EF)=655DE=655(-12t2+2t)=-355t2+1255t=-355(t2)2+1255当t2时,p的最大值为1255p取得最大值时,D(2,2)H在直线BC上且横坐标为3H(3,-52)sinABO=OAAB=255,即OA=255AB动点Q的速度从v变为255v时,转动角度BAx,IDx轴 即:yIyD212x12 解得:x2I的坐标为

4、(2,2)(3)存在满足条件的点M,使OMAABO如图,过点B作BN直线l于点N,过点N作STy轴于S,过点A作ATST于TBSNBNAT90SBN+BNSBNS+ANT90SBNANTBAN45BNNABSNNTA(AAS)BSNT,SNTA设N(n,a),则SNn,ATaBSOSOBATOBa1,NTSTSNOASN2nn=-a-a-1=2-n 解得:n=32a=-32N(32,-32)设直线l解析式为ykx+z,直线l过点N、A32k+z=-322k+z=0 解得:k=3z=-6直线l解析式为y3x6作点B(0,1)关于x轴的对称点B,过B作BM直线l于点M,连接AB、OMB(0,1),

5、ABOABOAOBAMB90点O、M在以AB为直径的圆上OMAOBAABO设直线BM解析式为:ykx+1k31 即k=-13直线BM解析式为:y=-13x+1y=-13x+1y=3x-6 解得:x=2110y=310点M坐标为(2110,310)2如图1,抛物线y=-12x2+bx+c与x轴交于点A、点B(4,0),与y轴交于点C;直线y=-43x+4经过点C,与x轴交于点D,点P是第一象限内抛物线上一动点(1)求抛物线的解析式;(2)若PCBDCB,求PCD的面积;(3)如图2,过点C作直线lx轴,过点P作PHl于点H,将CPH绕点C顺时针旋转,使点H的对应点H恰好落在直线CD上,同时使点P

6、的对应点P恰好落在坐标轴上,请直接写出此时点P的坐标解:(1)当x0时,y=-43x+44C(0,4)抛物线y=-12x2+bx+c过点B(4,0)、C-8+4b+c=00+0+c=4 解得:b=1c=4抛物线解析式为y=-12x2+x+4(2)如图1,直线CP与x轴交于点G,过点D作DECB于点E,交直线CP于点F,连接BFCEDCEF90在CDE与CFE中DCE=FCECE=CECED=CEF CDECFE(ASA)DEFE,即BC垂直平分DFBDBFB(4,0),C(0,4)OBOCOBC45CBFOBC45DBF90当y=-43x+40时,解得:x3D(3,0)BFBD431F(4,1

7、)设直线CF解析式为ykx+44k+41 解得:k=-34直线CP:y=-34x+4当y0时,-34x+40,解得:x=163G(163,0),DG=163-3=73y=-34x+4y=-12x2+x+4 解得:x1=0y1=4(即点C),x2=72y2=118P(72,118)SPCDSCDGSPDG=12DGOC-12DGyP=12DG(OCyP)=1273(4-118)=4916PCD的面积为4916(3)若点P落在y轴上,如图2,CPH绕点C旋转得CPH,H在直线CD上PCHPCHOCBBCH45OCBOCHBCHPCH即DCBPCB由(2)可得此时点P(72,118)若点P落在x轴上

8、,如图3,过点H作MNx轴于点M,交直线l于点N四边形OCNM是矩形MNOC4,OD3,COD90CD=OC2+OD2=5sinOCD=ODCD=35,cosOCD=OCCD=45,设点P坐标(p,-12p2+p+4)(0p4)CHCHp,PHPH4(-12p2+p+4)=12p2pMNy轴CHNOCDRtCNH中,cosCHN=NHCH=45NH=45CH=45pMHMNNH4-45pPMHPHC90PHM+CHNPHM+HPM90HPMCHNRtHPM中,sinHPM=MHPH=354-45p12p2-p=35解得:p14(舍去),p2=103-12p2+p+4=-509+103+4=16

9、9P(103,169)综上所述,点P坐标为(72,118)或(103,169)3若二次函数yax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,2),且过点C(2,2)(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且SPBA4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使ABOABM?若存在,求出点M到y轴的距离;若不存在,请说明理由解:(1)二次函数的图象经过点A(3,0)、B(0,2)、C(2,2)9a+3b+c=00+0+c=-24a+2b+c=-2 解得:a=23b=-43c=-2二次函数表达式为y=23x2-43x2(2)如图1,记直线BP

10、交x轴于点N,过点P作PDx轴于点D设P(t,23t2-43t2)(t3)ODt,PD=23t2-43t2设直线BP解析式为ykx2把点P代入得:kt2=23t2-43t2k=23t-43直线BP:y(23t-43)x2当y0时,(23t-43)x20,解得:x=3t-2N(3t-2,0)t3t213t-23,即点N一定在点A左侧AN3-3t-2=3(t-3)t-2SPBASABN+SANP=12ANOB+12ANPD=12AN(OB+PD)4123(t-3)t-2(2+23t2-43t-2)=4解得:t14,t21(舍去)23t2-43t2=323-163-2=103点P的坐标为(4,103

11、)(3)在抛物线上(AB下方)存在点M,使ABOABM如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EFy轴于点FAB垂直平分OEBEOB,OGGEABOABMA(3,0)、B(0,2),AOB90OA3,OB2,AB=OA2+OB2=13sinOAB=OBAB=21313,cosOAB=OAAB=31313SAOB=12OAOB=12ABOGOG=OAOBAB=61313OE2OG=121313OAB+AOGAOG+BOG90OABBOGRtOEF中,sinBOG=EFOE=21313,cosBOG=OFOE=31313EF=21313OE=24

12、13,OF=31313OE=3613E(2413,-3613)设直线BE解析式为yex2把点E代入得:2413e2=-3613,解得:e=-512直线BE:y=-512x2当-512x2=23x2-43x2,解得:x10(舍去),x2=118点M横坐标为118,即点M到y轴的距离为118补充方法:第(2)小问过点P作x的垂线与直线BA交于点C,用三角形PCB的面积减去三角形PCA的面积等于4直接求出点P的横坐标第(3)用一线三等角相似直接求出点E的坐标了(过点A作直线FE的垂线段,记垂足为H,连接AE,三角形AHE和三角形EFB相似)4如图,AB是O的直径,点C是O上一点(与点A,B不重合),

13、过点C作直线PQ,使得ACQABC(1)求证:直线PQ是O的切线(2)过点A作ADPQ于点D,交O于点E,若O的半径为2,sinDAC=12,求图中阴影部分的面积解:(1)证明:如图,连接OC,AB是O的直径,ACB90,OAOC,CABACOACQABC,CAB+ABCACO+ACQOCQ90,即OCPQ,直线PQ是O的切线(2)连接OE,sinDAC=12,ADPQ,DAC30,ACD60ABCACD60,CAB906030,EAODAC+CAB60,又OAOE,AEO为等边三角形,AOE60S阴影S扇形SAEOS扇形-12OAOEsin60=6036022-122232=23-3图中阴影

14、部分的面积为23-35如图,在ABC中,ACB90,将ABC沿直线AB翻折得到ABD,连接CD交AB于点ME是线段CM上的点,连接BEF是BDE的外接圆与AD的另一个交点,连接EF,BF(1)求证:BEF是直角三角形;(2)求证:BEFBCA;(3)当AB6,BCm时,在线段CM上存在点E,使得EF和AB互相平分,求m的值(1)证明:ACB90,将ABC沿直线AB翻折得到ABD,ADBACB90,EFBEDB,EBFEDF,EFB+EBFEDB+EDFADB90,BEF90,BEF是直角三角形(2)证明:BCBD,BDCBCD,EFBEDB,EFBBCD,ACAD,BCBD,ABCD,AMC9

15、0,BCD+ACDACD+CAB90,BCDCAB,BFECAB,ACBFEB90,BEFBCA(3)解:设EF交AB于J连接AEEF与AB互相平分,四边形AFBE是平行四边形,EFAFEB90,即EFAD,BDAD,EFBD,AJJB,AFDF,FJ=12BD=m2,EFm,ABCCBM,BC:MBAB:BC,BM=m26,BEJBME,BE:BMBJ:BE,BE=m2,BEFBCA,ACEF=BCBE,即36-m2m=mm2,解得m23(负根已经舍弃)6如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FHCD交BC于H,可以证明结论FHAB=FGBG

16、成立(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(2)计算:若菱形ABCD中AB6,ADC60,G在直线CD上,且CG16,连接BG交AC所在的直线于F,过F作FHCD交BC所在的直线于H,求BG与FG的长(3)发现:通过上述过程,你发现G在直线CD上时,结论FHAB=FGBG还成立吗?【解答】解:(1)结论FHAB=FGBG成立证明:由已知易得FHAB,FHAB=HCBC,FHGC,HCBC=FGBGFHAB=FGBG(2)G在直线CD上,分两种情况讨论如下:G在CD的延长线上时,DG10,如

17、图1,过B作BQCD于Q,由于四边形ABCD是菱形,ADC60,BCAB6,BCQ60,BQ33,CQ3,BG=192+(33)2=297又由FHGC,可得FHGC=BHBC,而CFH是等边三角形,BHBCHCBCFH6FH,FH16=6-FH6,FH=4811,由(1)知FHAB=FGBG,FG=FHBGAB=481116297=161197G在DC的延长线上时,CG16,如图2,过B作BQCG于Q,四边形ABCD是菱形,ADC60,BCAB6,BCQ60BQ33,CQ3BG=132+(33)2=14又由FHCG,可得FHGC=BHBC,FH16=BH6BHHCBCFHBCFH6,FH=48

18、5FHCG,BFBG=FHCGBF1448516=425FG14+425=1125(3)G在DC的延长线上时,FHAB=4856=85,FGBG=112514=85,FHAB=FGBG成立结合上述过程,发现G在直线CD上时,结论FHAB=FGBG还成立7如图,在平面直角坐标系中,OBOA,且OB2OA,点A的坐标是(1,2)(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得SABPSABO【解答】解:(1)过点A作AFx轴,垂足为点F,过点B作BEx轴,垂足为点E,则AF2,OF1OAOB,AOF+BOE90度又BOE+OBE90,A

19、OFOBE,RtAFORtOEB,BEOF=OEAF=OBOA=2,BE2,OE4,B(4,2)(2)设过点A(1,2),B(4,2),O(0,0)的抛物线为yax2+bx+ca-b+c=216a+4b+c=2c=0解之,得a=12b=-32c=0,所求抛物线的表达式为y=12x2-32x(3)由题意,知ABx轴设抛物线上符合条件的点P到AB的距离为d,则SABP=12ABd=12ABAF5d2点P的纵坐标只能是0,或4令y0,得y=12x2-32x0解之,得x0,或x3符合条件的点P1(0,0),P2(3,0)令y4,得12x2-32x4解之,得x=3412符合条件的点P3(3-412,4),P4(3+412,4)综上,符合题意的点有四个:P1(0,0),P2(3,0),P3(3-412,4),P4(3+412,4)

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|