1、方案设计题【专题思路剖析】方案设计型问题是设置一个实际问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优方案设计型问题主要考查学生的动手操作能力和实践能力方案设计型问题,主要有以下几种类型:(1)讨论材料,合理猜想设置一段讨论材料,让考生进行科学的判断、推理、证明;(2)画图设计,动手操作给出图形和若干信息,让考生按要求对图形进行分割或设计美观的图案;(3)设计方案,比较择优给出问题情境,提出要求,让考生寻求最佳解决方案操作型问题是指通过动手实验,获得数学结论的研究性活动这类问题需要动手操作、合理猜想和验证,有助于实践能力和
2、创新能力的培养,更有助于养成实验研究的习惯常见类型有:(1)图形的分割与拼接;(2)图形的平移、旋转与翻折;(3)立体图形与平面图形之间的相互转化【典型例题赏析】类型1:方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数例题1:(2015恩施州第22题10分)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料型号 甲种原料(千克) 乙种原料(千克) A产品(每件) 9 3
3、B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设工厂可安排生产x件A产品,则生产(50x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可解答:(1)设工厂可安排生产x件A产品,则生产(50x)件B产品由题意得:,解得:30x32的整数有三种生产方案:A30件,B20件;A31件,B19件;A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20120+308
4、0=4800(元)方案(二)A,31件,B,19件时,19120+3180=4760(元)方案(三)A,32件,B,18件时,18120+3280=4720(元)故方案(一)A,30件,B,20件利润最大点评:本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解【变式练习】(2015湖北荆州第23题10分)荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下
5、问题:鲢鱼草鱼青鱼每辆汽车载鱼量(吨)865每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润考点:一次函数的应用分析:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20xy)辆汽车装运青鱼,由20辆汽车的总运输量为120吨建立等式就可以求出结论;(2)根据建立不等装运每种鱼的车辆都不少于2辆,列出不等式组求出x的范围,设此次销售所获利润为w元,w=0.25x8+0.3(3x+20)6+0.2(20x+3x20)5=1.4x+
6、36,再利用一次函数的性质即可解答解答:解:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20xy)辆汽车装运青鱼,由题意,得8x+6y+5(20xy)=120,y=3x+20答:y与x的函数关系式为y=3x+20;(2),根据题意,得,解得:2x6,设此次销售所获利润为w元,w=0.25x8+0.3(3x+20)6+0.2(20x+3x20)5=1.4x+36k=1.40,w随x的增大而减小当x=2时,w取最大值,最大值为:1.42+36=33.2(万元)装运鲢鱼的车辆为2辆,装运草鱼的车辆为14辆,装运青鱼的车辆为4辆时获利最大,最大利润为33.2万元点评:本题考查了一次函数的
7、解析式的运用,一次函数的性质的运用,一元一次不等式组的运用,解答时求出函数的解析式是关键类型2:择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性例题2:(2015淄博第20题,7分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本(1)符合题意的组建方案有几种?
8、请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?考点:一元一次不等式组的应用分析:(1)设组建中型两类图书角x个、小型两类图书角(30x)个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本若组建一个中型图书角的费用是860本,组建一个小型图书角的费用是570本,因此可以列出不等式组 ,解不等式组然后去整数即可求解(2)根据(1)求出的数,分别计算出每种方案的费用即可解答:(1)设组建中型图书
9、角x个,则组建小型图书角为(30x)个由题意,得,化简得,解这个不等式组,得18x20由于x只能取整数,x的取值是18,19,20当x=18时,30x=12;当x=19时,30x=11;当x=20时,30x=10故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个(2)方案一的费用是:86018+57012=22320(元);方案二的费用是:86019+57011=22610(元);方案三的费用是:86020+57010=22900(元)故方案一费用最低,最低费用是22320元点评:此题主要考查了一
10、元一次不等式组在实际生活中的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题,同时也利用了一次函数【变式练习】(2015山东莱芜,第22题10分)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?【答案】(
11、1)三种组建方案(2)最低费用是22320元【解析】试题分析:(1)设组建中型图书角x个,则组建小型图书角为(30-x)个;根据不等关系:科技类书籍不超过1900本;人文类书籍不超过1620本列不等式组,进行求解;(2)此题有两种方法:方法一:因为总个数是不变的,所以费用少的越多,总费用越少;方法二:分别计算(1)中方案的价钱,再进一步比较试题解析:解:(1)设组建中型图书角x个,则组建小型图书角为(30-x)个 由题意得 解这个不等式组得18x20由于x只能取整数,x的取值是18,19,20 当x=18时,30-x=12;当x=19时,30-x=11;当x=20时,30-x=10故有三种组建
12、方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低,最低费用是86018+57012=22320(元) 方法二:方案一的费用是:86018+57012=22320(元);方案二的费用是:86019+57011=22610(元);方案三的费用是:86020+57010=22900(元)故方案一费用最低,最低费用是22320元考点:不等式组的应用类型3:操作型问题:大体可分
13、为三类,即图案设计类、图形拼接类、图形分割类等对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程例题3:(2015四川广安,第24题8分)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)考点:作图应用与设计作图分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA
14、的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可(4)正方形ABCD中,E、F分别是AB、B
15、C的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可解答:根据分析,可得(1)第一种情况下,分割后得到的最小等腰直角三角形是AEH、BEF、CFG、DHG,每个最小的等腰直角三角形的面积是:(42)(42)2=222=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是AEO、BEO、BFO、CFO,每个最小的等腰直角三角形的面积是:(42)(42)2=222=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是AHO、DHO、BFO、CFO,每个
16、最小的等腰直角三角形的面积是:(42)(42)2=222=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是AEI、OEI,每个最小的等腰直角三角形的面积是:(42)(42)22=2222=1(cm2)点评:(1)此题主要考查了作图应用与设计作图问题,要熟练掌握,解答此题的关键是结合正方形的性质和基本作图的方法作图(2)此题还考查了三角形的面积的求法,要熟练掌握【变式练习】(2015江苏南京,第25题10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形(要求:只要画出示意图,并在所画等腰三角形
17、长为3的边上标注数字3)【答案】答案见试题解析【解析】试题分析:以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可试题解析:满足条件的所有图形如图所示: 考点:1作图应用与设计作图;2等腰三角形的判定;3勾
18、股定理;4正方形的性质【拓展演练】1. (2014年广西南宁,第24题10分)“保护好环境,拒绝冒黑烟”某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用
19、最少?最少总费用是多少?2. (2014四川省德阳,第22题11分)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类ABC每辆汽车的装载量(吨)456(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案3. (2014四川广安,第24题8分)在校园文化建设活动中,需要裁剪一些菱形来美化教室现有平行四边形ABCD的邻边长分别为1,a(
20、a1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值4(2014内蒙古包头,第23题10分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理
21、由5. (2014浙江宁波,第26题14分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0x1),圆的半径为y求y关于x的函数解析式;当x取何值时圆的半径最大,
22、最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大6. (2014湘潭,第21题)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:x k b 1 . c o mA型B型价格(万元/台)1210x k b 1 . c o m月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由7. (2014济宁,第20题8分)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角
23、板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告名 称四等分圆的面积方 案方案一方案二方案三选用的工具带刻度的三角板 画出示意图简述设计方案作O两条互相垂直的直径AB、CD,将O的面积分成相等的四份指出对称性既是轴对称图形又是中心对称图形【拓展演练参考答案1. (2014年广西南宁,第24题10分)“保护好环境,拒绝冒黑烟”某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2
24、辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需35
25、0万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10a)辆,由“购买A型和B型公交车的总费用不超过1200万元,”和“10辆公交车在该线路的年均载客总和不少于680万人次,”列出不等式组探讨得出答案即可解答:解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:设购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)设购买A型公交车a辆,则B型公交车(10a)辆,由题意得,解得:6a8,所以a=6,7,8;则10a=4,3,2;三种方案:购买A型公交车6辆,则B型公交车4辆:1006+1504=1200万元;购买A型公交车7辆
26、,则B型公交车3辆:1007+1503=1150万元;购买A型公交车8辆,则B型公交车2辆:1008+1502=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元点评:此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题2. (2014四川省德阳,第22题11分)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类ABC每辆汽车的装载量(吨)456(1
27、)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案考点:一元一次不等式组的应用;二元一次方程组的应用分析:(1)设装运A、B两种农产品各需x、y辆汽车等量关系:40辆车都要装运,A、B、C三种农产品共200吨;(2)关系式为:装运每种农产品的车辆数11解答:(1)设装运A、B两种农产品各需x、y辆汽车则,解得答:装运A、B两种农产品各需13、14辆汽车;(2)设装运A、B两种农产品各需x、y辆汽车则4x+5y+6(40xy)=200,解得:y=2x+40由题意可得如下不等式组:,即,解
28、得:11x14.5因为x是正整数,所以x的值可为11,12,13,14;共4个值,因而有四种安排方案方案一:11车装运A,18车装运B,11车装运C方案二:12车装运A,16车装运B,12车装运C方案三:13车装运A,14车装运B,13车装运C方案四:14车装运A,12车装运B,14车装运C点评:本题考查了二元一次方程组和一元一次不等式组的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装载的几种方案是解决本题的关键3. (2014四川广安,第24题8分)在校园文化建设活动中,需要裁剪一些菱形来美化教室现有平行四边形ABCD的邻边长分别为1,a(a1)的
29、纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值考点:作图应用与设计作图分析:平行四边形ABCD的邻边长分别为1,a(a1),剪三次后余下的四边形是菱形的4种情况画出示意图解答:如图,a=4,如图,a=,如图,a=,如图,a=,点评:此题主要考查了图形的剪拼以及菱形的判定,根据已知行四边形ABCD将平行四边形分割是解题关键4(2014内蒙古包头,第23题10分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠甲商场的优惠条件是:第一件按原售价收
30、费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由考点:一次函数的应用分析:(1)根据两家商场的优惠方案分别列式整理即可;(2)根据收费相同,列出方程求解即可;(3)根据函数解析式分别求出x=5时的函数值,即可得解解答:(1)当x=1时,y1=3000;当x1时,y1=3000+3000(x1)(130%)=2100x+900y1=;y2=3000x(125%)=2250x,y
31、2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+900=21005+900=11400,y2=2250x=22505=11250,1140011250,所买商品为5件时,应选择乙商场更优惠点评:本题考查了一次函数的应用,读懂题目信息,理解两家商场的优惠方案是解题的关键5. (2014浙江宁波,第26题14分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上
32、,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0x1),圆的半径为y求y关于x的函数解析式;当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大考点:圆的综合题分析:(1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1(
33、2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用AOMOFN后对应边成比例整理方程,进而可求r的值(3)类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度则选择最小跨度,取其,即为半径由EC为x,则新拼图形水平方向跨度为3x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论已有关系表达式,则直接根据不等式性质易得方案四中的最大半径另
34、与前三方案比较,即得最终结论解答:(1)方案一中的最大半径为1分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1(2)如图1,方案二中连接O1,O2,过O1作O1EAB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为O与AB,BF的切点方案二:设半径为r,在RtO1O2E中,O1O2=2r,O1E=BC=2,O2E=ABAO1CO2=32r,(2r)2=22+(32r)2,解得 r=方案三:设半径为r,在AOM和OFN中,AOMOFN,解得 r=比较知,方案三半径较大(3)方案四:EC=x,新拼图形水平方向跨度为3x,竖直方向跨度为2+x类
35、似(1),所截出圆的直径最大为3x或2+x较小的1当3x2+x时,即当x时,r=(3x);2当3x=2+x时,即当x=时,r=(3)=;3当3x2+x时,即当x时,r=(2+x)当x时,r=(3x)(3)=;当x=时,r=(3)=;当x时,r=(2+x)(2+)=,方案四,当x=时,r最大为1,方案四时可取的圆桌面积最大点评:本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习6. (2014湘潭,第21题)某企业新增了一个化工项目,为了节
36、约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:x k b 1 . c o mA型B型价格(万元/台)1210x k b 1 . c o m月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由考点:一元一次不等式组的应用分析:(1)设购买污水处理设备A型号x台,则购买B型号(8x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可(2)计算出每一方案的花费,通过比较即可得到答案解答:
37、解:设购买污水处理设备A型号x台,则购买B型号(8x)台,根据题意,得,解这个不等式组,得:2.5x4.5x是整数,x=3或x=4当x=3时,8x=5;当x=4时,8x=4答:有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;(2)当x=3时,购买资金为121+105=62(万元),当x=4时,购买资金为124+104=88(万元)因为8862,所以为了节约资金,应购污水处理设备A型号3台,B型号5台答:购买3台A型污水处理设备,5台B型污水处理设备更省钱点评:本题考查了一元一次不等式组的应用,本题是“方案设计”问题
38、,一般可把它转化为求不等式组的整数解问题,通过表格获取相关信息,在实际问题中抽象出不等式组是解决这类问题的关键7. (2014济宁,第20题8分)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告名 称四等分圆的面积方 案方案一方案二方案三选用的工具带刻度的三角板 画出示意图简述设计方案作O两条互相垂直的直径AB、CD,将O的面积分成相等的四份指出对称性既是轴对
39、称图形又是中心对称图形考点:利用旋转设计图案;利用轴对称设计图案分析:根据圆的面积公式以及轴对称图形和中心对称图形定义分别分析得出即可解答:名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板带刻度三角板、量角器、圆规带刻度三角板、圆规 画出示意图简述设计方案作O两条互相垂直的直径AB、CD,将O的面积分成相等的四份(1)以点O为圆心,以3个单位长度为半径作圆;(2)在大O上依次取三等分点A、B、C;(3)连接OA、OB、OC则小圆O与三等份圆环把O的面积四等分(4)作O的一条直径AB;(5)分别以OA、OB的中点为圆心,以3个单位长度为半径作O1、O2;则O1、O2和O中剩余的两部分把O的面积四等分指出对称性既是轴对称图形又是中心对称图形轴对称图形既是轴对称图形又是中心对称图形点评:此题主要考查了利用轴对称设计图案以及轴对称图形以及中心对称图形的性质,熟练利用扇形面积公式是解
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。