ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:275KB ,
文档编号:5855158      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5855158.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(人教版九年级数学下册-相似三角形应用举例习题.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

人教版九年级数学下册-相似三角形应用举例习题.doc

1、相似三角形应用举例习题一、选择题(每小题5分,共25分)1如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得ABBC,CDBC,点E在BC上,并且点A,E,D在同一条直线上若测得BE20m,CE10m,CD20m,则河的宽度AB等于( )A60m B40m C30m D20m 第1题图 第2题图 2如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知ABBD,CDBD,且测得AB1.2米,BP1.8米,PD12米, 那么该古城墙的高度是( )A6米 B8米 C18米 D24米3身高1.6

2、米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是( )A8米 B4.5米 C8厘米 D4.5厘米4如图,某超市在一楼至二楼之间安装有电梯,天花板与地面平行,张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为( )A5.5m B6.2m C11m D2.2m5如图,身高1.6m的小华站在距路灯5m的C点处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为( )A5m B4.9m C4.8m D4.7m 第4题图 第5题图 二、填空题(每小题5分,共25分)6在同一时刻太阳光下

3、,身高1.5m的小强影长是0.9m,旗杆的影长是10.8m,则旗杆的高为 m7如图,A、B两点被池塘隔开,在AB外任选一点C,连接AC、BC分别取其三等分点M、N量得MN28m则AB的长为 m8如图,矩形台球桌ABCD的尺寸为2.7m1.6m,位于AB中点处的台球E沿直线向BC边上的点F运动,经BC边反弹后恰好落入点D处的袋子中,则BF的长度为 m 第7题图 第8题图 9如图,已知零件的外径为30mm,现用一个交叉卡钳(两条尺长AC和BD相等,OCOD)测量零件的内孔直径AB若OC:OA1:2,且量得CD12mm,则零件的厚度x_mm 10为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一

4、组标杆、皮尺,设计了如图所示的测量方案 已知测量同学眼睛A标杆顶端F树的顶端E同一直线上,此同学眼睛距地面1.6m标杆长为3.3m且BC1m,CD4m,则ED m 第9题图 第10题图三、解答题(共50分)11(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB2m,它的影子BC1.6m,木竿PQ的影子有一部分落在了墙上,PM1.2m,MN0.8m,求木竿PQ的长度12(10分)甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80cm的竹竿的影长为60cm乙组:如图(2),测得学校旗杆的

5、影长为900cm丙组:如图(3),测得校园景灯的灯罩部分影长HQ为90cm,灯杆被阳光照射到的部分PG长40cm,未被照射到的部分KP长24cm(灯罩视为圆柱体,灯杆粗细忽略不计且穿过灯罩中轴线)(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度是多少米;(2)请根据甲、丙两组得到的信息,求:灯罩底面半径MK的长; 灯罩的高度KK的长13(10分)如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长

6、)为2米,求小桥所在圆的半径14(10分)为了加强视力保护意识,小明想在长为4.3米,宽为3.2米的书房里挂一张测试距离为5米的视力表在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计的方案新颖,构思巧妙(1)甲生的方案:如图1,将视力表挂在墙ABEF和墙ADGF的夹角处,被测试人站立在对角线AC上,问:甲生的设计方案是否可行?请说明理由(2)乙生的方案:如图2,将视力表挂在墙CDGH上,在墙ABEF上挂一面足够大的平面镜,根据平面镜成像原理课计算得到:测试线应画在距离墙ABEF的 米处(3)丙生的方案:如图3,根据测试距离为5m的大视

7、力表制作一个测试距离为3m的小视力表图中的ADFABC,如果大视力表中“E”的长是多少cm?15(10分)为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB),再把竹竿竖立在地面上, 测得竹竿的影长(BC)为1.8米,求路灯离地面的高度参考答案1B【解析】由两角对应相等可得BAECDE,利用对应边成比例可得两岸间的大致距离ABABBC,CDBC,BAECDE,BE20m,CE10m,CD20m,解得:AB40故选B2B【解析】ABPCDP,(米)故选B3A【解析】设树的高度是x米,根据题意得,解得

8、x8米故选A4A【解析】作DEBC交FC于点E,得到ABCCED,利用相似三角形的对应边的比相等得到比例式即可求得两层楼之间的距离:如图,作DEBC交FC于点E,ABCCED,设ABx米,由题意得:DE1046,ECx2.2,解得:x5.5故选A5C【解析】CEAB,ADBEDC,AB:CEBD:CD,即AB:1.67.5:2.5,解得:AB4.8m即路灯的高度为4.8米故答案为:4.8故选C618【解析】根据题意得:小强的身高:小强的影长旗杆的高度:旗杆的影长,然后将数字代入进行求解784【解析】因为M、N分别为AC,BC的三等分点,设MCx,则AC3x,又CMNCAB,MN:ABMC:AC

9、即28:ABx:3x解得:AB84m故答案为:8480.9【解析】根据题意得出EBFDCF,进而利用相似三角形的性质得出比例式求出即可:由题意可得出:DFCEFB,EBFFCD,EBFDCF,解得:BF0.993【解析】要求零件的厚度,由题可知只需求出AB即可因为CD和AB平行,可得AOBCOD,可以根据相似三角形对应边成比例即可解答:两条尺长AC和BD相等,OCOD,OAOBOC:OA1:2,OD:OBOC:OA1:2CODAOB,AOBCODCD:ABOC:OA1:2CD12mm,AB24mm2x2430.x3mm1010.1【解析】首先做出辅助线,得出AHFAGE,进而求出GE的长,进而

10、求出ED的长:如图,过点A作AGDE于点G,交CF于点H由题意可得 四边形ABCH、ABDG、CDGH都是矩形,ABCFDEAHFAGE由题意可得AHBC1,AGBD5,FHFCHCFCAB3.31.61.7EDGEDGGEAB8.51.610.111木竿PQ的长度为2.3米【解析】解:过N点作NDPQ于D,可得ABCQDN, ,又AB2,BC1.6,PM1.2,NM0.8,QD PQQDDPQDNM1.50.82.3(米)答:木竿PQ的长度为2.3米12(1)DE12m (2)MK18cm KK72cm【解析】(1)根据同一时刻时在阳光下的物高与影长成比例可求出DE的长;(2)根据条件可证R

11、tPGHRtPKMRtABC,然后利用相似三角形的对应边成比例可求出MK的长;根据条件可证RtPKMRtLKN,RtABCRtLGQ,然后利用相似三角形的性质可求出KK的长解:(1)因为同一时刻时在阳光下的物高与影长成比例,所以所以解得DE1200cm12m;(2)根据条件可得RtPGHRtPKMRtABC,所以所以解得GH30cm,MK18cm,RtPKMRtLKN,由KP长24cm,得出LK24cm,RtABCRtLGQ,所以所以KK72cm135米【解析】根据已知得出旗杆高度,进而得出GMMH,再利用勾股定理求出半径即可解:海涛身高1.6米,测得其影长为2.4米,8米高旗杆DE的影子为:

12、12m,测得EG的长为3米,HF的长为1米,GH12318(m),GMMH4m如图,设小桥的圆心为O,连接OM、OG设小桥所在圆的半径为r,MN2m,OM(r2)m在RtOGM中,由勾股定理得:OG2OM242,r2(r2)216,解得:r5答:小桥所在圆的半径为5m14(1)甲生的方案可行 见解析(2)1.8(3)2.1cm【解析】(1)由勾股定理求得对角线的长与5米比较(2)根据平面镜成像原理知,视力表与它的像关于镜子成对称图形,故EF距AB的距离53.21.8米(3)由相似三角形的性质可求解解:(1)甲生的方案可行理由如下:根据勾股定理得,AC2AD2CD23.224.323.224.3252AC252即AC5甲生的方案可行(2)设:测试线应画在距离墙ABEF的x米处,根据平面镜成像,可得:x3.25,x1.8,测试线应画在距离墙ABEF的1.8米处故答案为:1.8(3)ADFABC, 即FD2.1(cm)答:小视力表中相应“E”的长是2.1cm15路灯离地面的高度是9米【解析】先根据ABOC,OSOC可知ABCSOC,同理可得ABCSOC,再由相似三角形的对应边成比例即可得出h的值解:ABOC,OSOC,SOAB,ABCSOC, ,即,解得OBh1,同理,ABOC,ABCSOC,把代入得,解得h9(米)答:路灯离地面的高度是9米

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|