1、第七章置信区间的概念置信区间的概念一、置信区间的概念一、置信区间的概念 二二、数学期望的置信区间、数学期望的置信区间 三三、方差的置信区间、方差的置信区间 精选课件这种形式的估计称为区间估计区间估计.前面,我们讨论了参数点估计.它是用样本算得的一个值去估计未知参数.但是点估计值仅仅是未知参数的一个近似值,它没有反映出这个近似值的误差范围,使用起来把握不大.范围通常用区间的形式给出的。较高的可靠程度相信它包含真参数值.也就是说,我们希望确定一个区间,使我们能以比 这里所说的“可靠程度”是用概率来度量的,称为置信概率,置信度或置信水平.习惯上把置信水平置信水平记作 1 ,这里 是一个很小的正数,称
2、为显著水平显著水平。精选课件),(2111nXXX),(2122nXXX)(21若由总体X的样本 X1,X2,Xn 确定的,21则称 为随机区间。两个统计量随机区间与常数区间),(ba不同,其长度与在数轴上的位置与样本nXXX,21有关。当一旦获得样本值nxxx,21那么,),(211nxxx),(212nxxx都是常数。,21为常数区间。精选课件121P若满足 设 是总体X的 一个未知参数,,10的置信区间置信区间.121和(双侧置信区间).的置信水平(置信度)为分别称为置信下限和置信上限为显著水平.1为置信度,则称区间 是,21,21若存在随机区间对于给定的精选课件置信水平的大小是根据实际
3、需要选定的.121P根据一个实际样本,,21,使一个尽可能小的区间 由于正态随机变量广泛存在,指标服从正态分布,特别是很多产品的我们重点研究一个正态总体情形由给定的置信水平,我们求出975.01即取置信水平 或 0.95,0.9 等.例如,通常可取显著水平 等.,1.0,05.0,025.0数学期望 和方差 的区间估计。2精选课件设nXXX,21为总体),(2NX的样本,2,SX分别是样本均值和样本方差。对于任意给定的,我们的任务是通过样本寻找一它以1的概率包含总体X的数学期望。个区间,精选课件设),(2NX),(2nNXnXDXE2则随机变量)1,0(2NnXZ1 1、已知、已知2 2时,时
4、,的置信区间的置信区间令221XPzn 22z22z精选课件221XPzn 2221XPzzn,22znXznX这就是说随机区间它以1的概率包含总体 X的数学期望。由定义可知,此区间即为的置信区间置信区间。221PzXznn 122znXznXP22z22z精选课件,22znXznX置信区间也可简记为2znX 它以1的概率包含总体X的数学期望。由定义可知,此区间即为的置信区间置信区间。其置信度为 1。置信下限2znX 置信上限2znX 22z22z精选课件16195.0105.0n查表得0.02521.96zz若由一个样本值算得样本均值的观察值20.5x则得到一个区间(5.200.49)(4.
5、71,5.69)我们称其为置信度为0.95的的置信区间。其含义是:若反复抽样多次,每个样本值(n=16)按公式1.961.96(,)44xx即(0.49)x确定一个区间。,22znXznX精选课件(0.49,0.49)xx确定一个区间。在这么多的区间内包含的占0.95,不包含的占0.05。本题中(4.71,5.69),属于那些包含的区间的可信程度为0.95.或“该区间包含”这一事实的可信程度注:的置信水平1的置信区间不唯一。为0.95.精选课件当 n 充分大时,无论X服从什么分布,都近似有)1,0(NnDXEXXZ的置信区间是总体),(2NX的前提下提出的。均可看作EX的置信区间。,22znX
6、znX精选课件 设总体X N(,0.09),有一组样本值:12.6,13.4,12.8,13.2,求参数的置信度为0.95的置信区间.解解的置信区间为22,XzXznn00 代入样本值算得 ,12.706,13.294.得到的一个区间估计为注:该区间不一定包含注:该区间不一定包含.0.02521.96zz有 1=0.95,0=0.3,n=4,0.30.313 1 96,13 1.9622.13x 精选课件05.0可以取标准正态分布上分位点z0.04 和 z0.01,则又有0.040.0120.95XPzzn0.010.040.95P XzXznn则的置信度为0.95的置信区间为0.010.04
7、,XzXznn与上一个置信区间比较,同样是95.01其区间长度不一样,上例0.025123.920.984zn比此例0.040.0111()4.081.0244zz短。01.001.0z04.004.0z精选课件第一个区间为优(单峰对称的)。可见,像 N(0,1)分布那样概率密度的图形是单峰且对称的情况。当n固定时以2znX 的区间长度为最短,我们一般选择它。若以L为区间长度,则22znL 可见L随 n 的增大而减少(给定时),有时我们嫌置信度0.95偏低或偏高,也可采用0.99或0.9.对于 1 不同的值,可以得到不同的置信区间。精选课件估计在区间 内.,21 这里有两个要求:),(2111
8、nXXX只依赖于样本的界限(构造统计量)可见,对参数 作区间估计,)(21 就是要设法找出两个),(2122nXXX一旦有了样本,就把2.估计的精度要尽可能的高.如要求区间长度12 尽可能短,或能体现该要求的其它准则.,21 1.要求 很大的可能被包含在区间 内,21 P就是说,概率即要求估计尽量可靠.要尽可能大.可靠度与精度是一对矛盾,条件下尽可能提高精度.一般是在保证可靠度的精选课件已知某种油漆的干燥时间X(单位:小时)服从正态分布),1,(NX其中未知,现在抽取25个样品做试验,得数据后计算得62511nkkxx取05.0(10.95),求的置信区间。解解0.02521.96zz625x
9、n2znx392.0696.1516所求为5.608,6.392.精选课件中随机地抽查了9人,其高度分别为:;,置信度为假设标准差%9570的置信区间。试求总体均值由样本值算得:解:已知.05.0,9,70n.115)110120115(91x,由此得置信区间:查正态分布表得临界值96.12Z57.119,43.1109/796.1115,9/796.1115已知幼儿身高现从56岁的幼儿115,120,131,115,109,115,115,105,110cm;,22znXznX2(,),XN 精选课件当总体X的方差未知时,容易想到用样本方差 2代替2 2。已知已知)1(2ntnSXT则对给定
10、的,令1)1(22ntnSXP查t 分布表,可得)1(2nt的值。则的置信度为1 的置信区间为1)1()1(22ntnSXntnSXP)1(),1(22ntnSXntnSX)1(2ntnSX精选课件40名旅游者。解解本题是在2 2未知的条件下求正态总体参数的置信区间。选取统计量为05.0由公式知的置信区间为查表0227.2)39()39(025.0205.0 tt则所求的置信区间为95.113,05.96为了调查某地旅游者的消费额为X,随机访问了得平均消费额为105x元,样本方差2228s设求该地旅游者的平均消费额的置信区间。)1(2ntnSXT)1(2ntnSX若2 22525的置信区间为2
11、znX 96.1405105即55.106,45.103),(2NX精选课件用某仪器间接测量温度,重复测量5次得0000012751260124512651250求温度真值的置信度为 0.99 的置信区间。解解设为温度的真值,X表示测量值,通常是一个正态随机变量 .EX问题是在未知方差的条件下求的置信区间。125925105150511250 x4570)12591275()12591250(151222s339.55.2852s01.041n由公式查表6041.4)4()4(005.0201.0 tt则所求的置信区间为58.241259,58.241259)1(2ntnSX精选课件解解本题是
12、在2 2未知的条件下求正态总体参数的置信区间。05.0由公式知的置信区间为查表306.2)8()8(025.0205.0tt则所求的置信区间为 1.6889,9.6650为了估计一批钢索所能承受的平均张力(单位kg/cm2),22286720sx设钢索所能承受的张力X,分别估计这批钢索所能承受的平均张力的范围与所能承受的平均张力。)1(2ntnSX随机选取了9个样本作试验,2867202.3063即则钢索所能承受的平均张力为 6650.9 kg/cm2由试验所得数据得),(2NX22286720sx精选课件下面我们将根据样本找出2 2 的置信区间,这在研究生产的稳定性与精度问题是需要的。已知总
13、体),(2NX我们利用样本方差对2 2进行估计,由于不知道S2与2 2差多少?容易看出把22S看成随机变量,又能找到它的概率分布,则问题可以迎刃而解了。22S的概率分布是难以计算的,而2222(1)(1)nSn对于给定的).10(1)1()1()1(2222221nSnnP)1(22n2 p yx)1(221n2精选课件212(1)0()2np y d y)1(22n2 p yx)1(221n21)1()1()1(2222221nSnnP22(1)()2np y d y1)1()1()1()1(22122222nSnnSnP则得到2 2随机区间随机区间)1()1(,)1()1(2212222n
14、SnnSn以 的概率包含未知方差2 2,1这就是2 2的置信度为1的置信区间置信区间。精选课件某自动车床加工零件,抽查16个测得长度(毫米)01.1203.1216.1209.1208.1201.1212.1215.12怎样估计该车床加工零件长度的方差。解解 先求06.1201.1208.1211.1207.1213.1206.1215.12)05.0(075.1206.012.015.016112x)075.1206.12()075.1215.12(151222s2 2的估计值0024.05.716121515100001222或11)(11122122niiniixnxnxxns查表262
15、.6)15(2975.0488.27)15(2025.0精选课件00588.0,00133.0所求标准差标准差的置信度为0.95的 置信区间由)1()1(,)1()1(2212222nSnnSn0765.0,0365.0得得)1()1(,)1()1(2212222nsnnsn262.60024.015,488.270024.015得得精选课件为了估计灯泡使用时数(小时)的均值和解解)05.0(查表7.2)9(2975.019)9(2025.0测试了10个灯泡得2220s1500 x方差2 2,若已知灯泡的使用时数为X,),(2NX求和2 2的置信区间。2(1)9 4003600ns由公式知的置
16、信区间为)1(2ntnSX262.2)9()9(025.0205.0tt的置信区间为查表3.141500即3.1514,7.1485由公式知2 2的置信区间为)1()1(,)1()1(2212222nSnnSn2 2的置信区间为33.1333,47.1897.24009,194009精选课件电动机由于连续工作时间(小时)过长会烧坏,解解)05.0(查表18.2)8(2975.054.17)8(2025.0烧坏前连续工作的时间X,得2265.2s7.39x),(2NX求和2 2的置信区间。今随机地从某种型号的电动机中抽取9台,测试了它们在设由公式知的置信区间为2(1)SXtnn0.0252.65
17、39.7(8)9t04.27.39即74.41,66.378064.25,2041.3所求2 2的置信度为0.95的 置信区间)1()1(,)1()1(2212222nsnnsn18.265.28,54.1765.2822得得精选课件一般是从确定误差限误差限入手.1|P使得称 为 与 之间的误差限.1,可以找到一个正数 ,只要知道 的概率分布,确定误差限并不难.我们选取未知参数的某个估计量,根据置信水平 由不等式|可以解出 :这个不等式就是我们所求的置信区间.精选课件),(2NX1221uWuP被估被估参数参数条件条件统计量统计量置信区间置信区间已知已知2未知未知22未知未知)1,0(NnXZ
18、)1(ntnSXT22,XzXznn)1(,)1(22ntnSXntnSX2222(1)(1)nSn )1()1(,)1()1(2212222nSnnSn精选课件P294 4 5 6 8 10 12精选课件例例4 假定初生婴儿的体重服从正态分布,随机抽取12 名婴儿,测得体重为:(单位:克)3100,2520,3000,3000,3600,3160,3560,3320,2880,2600,3400,2540 试以 95%的置信度估计初生婴儿的平均体重以及方差.解解 设初生婴儿体重为X 克,则 XN(,2),(1)需估计,而未知 2.3057,375.3,xs0.05精选课件05.012)1(/
19、ntnSXT取取201.2作为统计量.有有 =,n=,3057,375.3,xs375.3375.3 3057-2.201,30572.2011212 2818,3296.t0.025(11)=,即的置信区间。(1)需估计,而未知 2.)1(),1(22ntnSXntnSX精选课件(2)需估计2,而未知,取统计量为92.21816.3有 20.025(11)=,20.975(11)=,)1()1(2222nSn2111549350.99,s3.816549000,21.92549000 112的置信区间为 70682.07,406014.41.即0.05精选课件解解01.0由置信区间的概念,所
20、求的0.99的 置信区间为在交通工程中需要测定车速(单位 km/h),由以往2258.32、现在作了150次观测,试问平均测量值的误差在 99.01XP的经验知道,即测量值为X,),(2NX测量值的误差在 之间。11、至少作多少次观测,才能以0.99的可靠性保证平均之间的概率有多大?1)58.3,(2NX由题意要求用平均测量值 来估计X其误差X由题意知025.0znX99.0005.0ZnXP精选课件57.286005.0zn才能以0.99的可靠性保持平均测量误差在之间。158.3150.2n1XPnnXP1)(2n1)421.3(29994.019997.02即则钢索所能承受的平均张力为 6
21、650.9 kg/cm299.0005.0ZnXP令1005.0Zn047.86)576.2(58.322n025.0znX精选课件 设总体X N(,0.09),有一组样本值:12.6,13.4,12.8,13.2,求参数的置信度为0.95的置信区间.解解:有1=0.95,0=0.3,n=4,X是的无偏估计量,是优良估计量,且X),(0nN 从而nXZ/0)(1,0N精选课件 在标准正态分布表中查得上侧分位数,0.9511.96/1.960nXPZP,0.951.961.9600nXnXP或得的置信区间为,nXnX001.961.96Z/2=Z0.025=1.96精选课件 代入样本值算得代入样本值算得 ,得到得到的一个区间的一个区间估计为估计为13x43.0,43.01.961.96xx12.706,13.294.注:该区间不一定包含注:该区间不一定包含.总结此例,做了以下工作:总结此例,做了以下工作:1)根据)根据优良性准则优良性准则选取统计量来选取统计量来估计参数;估计参数;是是的优良估计量:无偏、有效、相合的优良估计量:无偏、有效、相合.X精选课件
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。