1、学习-好资料立体几何之外接球问题一 讲评课1课时 总第 课时月 日 1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,则球的表面积为( )A.B.C.D.2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为()A.B.C.D.3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( )A.B.C.D.4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( )A.B.C.D.5、已知都在半径为的球面上,且,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面
2、面积的最小值为()A.B.C.D.6、某几何体的三视图如图所示,这个几何体的内切球的体积为( )A.B.C.D.7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于( )A.B.C.D.8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( )A.B.C.D.9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( )A.B.C.D.10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为 ( )A.B.C.D.立体几何之外接球
3、问题二讲评课 1课时 总第 课时 月 日 11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为_.12、 底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为_.13、 底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为_.14、 若一个正四面体的表面积为,其内切球的表面积为,则_.15、 若一个正方体的表面积为,其外接球的表面积为,则_.16.已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为_16、 在三棱锥中,平面,,则此三棱锥外接球的体积为_18、底面是正多边形,
4、顶点在底面的射影是底面中心的棱锥叫正棱锥如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为_.17、 三棱柱的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为,则三棱柱的最大体积为_.20、一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为,则这个球的表面积为_.立体几何之三视图问题1讲评课 1课时 总第 课时 月 日 3、一个几何体的三视图如下图所示,则这个几何体的体积是()A.B.C.D.4、如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则它的体积为( )A.B.C.D.5、某几何
5、体的三视图如图所示,则它的表面积为( )A.B.C.D.6、某几何体三视图如图所示,则该几何体的体积为( )A.B.C.D.7、多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为( )A.B.C.D.8、某一简单几何体的三视图如图所示,该几何体的外接球的表面积是( )A.B.C.D.9、如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积的最大值是( ) A.B.C.D.10、一个几何体的三视图如图,则这个几何体的表面积是( )A.B.C.D.11、若某空间几何体的三视图如图所示,根据
6、图中数据,可得该几何体的表面积是( ) A.B.C.D.12、某几何体三视图如下图所示,则该几何体的体积是( )A.B.C.D.13、一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为( )A.B.C.D.14、已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为( )A.B.C.D.15、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的的体积为( ) A.B.C.D.立体几何之三视图问题2讲评课 1课时 总第 课时 月 日 16、某长方体的三视图如右图,长度为的体对角线在正视图中的长度为,在侧视图中的长度为,则该长方体的全面积为_
7、.17、一个空间几何体的三视图如下图所示,则该几何体外接球的表面积为_. 18、一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积_19、已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),则该四棱锥的体积为_. 20、 一个几何体的三视图如图所示(单位:) ,则该几何体的体积为_. 21、已知一个几何体的三视图如图所示(单位:),则该几何体的体积为_. 22、某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是_.23、一个多面体的三视图如图所示,则该多面体的表面积为_24、2016年11月18日13时59分,神舟十一号飞船返回舱在内蒙古中部预定区域成功着
8、陆. 神舟十一号载人飞行,是我国迄今为止时间最长的一次载人航天飞行,在轨33天飞行中,航天员景海鹏、陈冬参与的实验和实验多达38项. “跑台束缚系统”是未来空间站长期飞行的关键锻炼设备,本次任务是国产跑台首次太空验证. 如图所示是“跑台束缚系统”中某机械部件的三视图(单位:),则此机械部件的表面积为_.在我们学校大约有4000多名学生,其中女生约占90%以上。按每十人一件饰品计算,大概需要360多件。这对于开设饰品市场是很有利的。女生成为消费人群的主体。 25、26、 (5) 资金问题一个几何体的三视图如图所示,则该几何体的表面积为_情感性手工艺品。不少人把自制的手机挂坠作为礼物送给亲人朋友,
9、不仅特别,还很有心思。每逢情人节、母亲节等节假日,顾客特别多。立体几何之外接球问题答案解析第1题答案现在是个飞速发展的时代,与时俱进的大学生当然也不会闲着,在装扮上也不俱一格,那么对作为必备道具的饰品多样性的要求也就可想而知了。C第1题解析如图所示,为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则圆心在过的圆面上,即的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径,球的表面积为,故选1、现代文化对大学生饰品消费的影响2003年,上海市总人口达到1464万人,上海是全国第一个出现人口负增长的地区。第2题答案B第2题解析“碧芝”的成功归于他的唯一,这独一无二的物品就吸引了各种
10、女性的眼光。设球心为,设正三棱柱上底面为,中心为,因为三棱柱所有棱的长都为,则可知,又由球的相关性质可知,球的半径,所以球的表面积为,故选.第3题答案C第3题解析8-4情境因素与消费者行为 2004年3月20日如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,(四)大学生对手工艺制品消费的要求设球的半径为,此时,上海市劳动和社会保障局所辖的“促进就业基金”,还专门为大学生创业提供担保,贷款最高上限达到万元。故,则球的表面积为,故选.第4题答案D第4题解析该几何体为三棱锥,设球心为,分别为和的外心,易求得,,球的半径,该几何体外接球的表面积为第5题答案B第5题解析,圆心在平面的射影为的中
11、点,当线段为截面圆的直径时,面积最小,截面面积的最小值为.第6题答案C第6题解析此几何体是底面边长为,高为的正四棱锥,可算出其体积为,表面积为. 令内切球的半径为,则,从而内切球的体积为,故选C.第7题答案B第7题解析由题意可知四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的直径,且四棱锥的高半径,进而可知此四棱锥的四个侧面均是边长为的正三角形,底面为边长为的正方形,所以该四棱锥的表面积为,于是,,进而球的体积. 故选.第8题答案B第8题解析由题可知该三棱锥为一个棱长的正方体的一角,则
12、该三棱锥与该正方体有相同的外接球,又正方体的对角线长为,则球半径为,则. 故选.第9题答案A第9题解析如图:设、为棱柱两底面的中心,球心为的中点.又直三棱柱的棱长为,可知,所以,因此该直三棱柱外接球的表面积为,故选.第10题答案D第10题解析此几何体是三棱锥,底面是斜边长为的等腰直角三角形,且顶点在底面内的射影是底面直角三角形斜边的中点.易知,三棱锥的外接球的球心在上.设球的半径为,则,解得:,外接球的表面积为.第11题答案第11题解析过圆锥的旋转轴作轴截面,得及其内切圆和外切圆,且两圆同圆心,即的内心与外心重合,易得为正三角形,由题意的半径为,的边长为,圆锥的底面半径为,高为,第12题答案第
13、12题解析设球心为,正三棱柱的上下底面的中心分别为,底面正三角形的边长为,则,由已知得底面,在中,,由勾股定理得,故三棱柱体积,又,所以,则.第13题答案第13题解析底面正三角形外接圆的半径为,圆心到底面的距离为,从而其外接圆的半径,则该球的表面积.第14题答案第14题解析设正四面体棱长为,则正四面体表面积为,其内切球半径为正四面体高的,即,因此内切球表面积为,则.第15题答案第15题解析设正方体棱长为,则正方体表面积为,其外接球半径为正方体体对角线长的,即为,因此外接球表面积为,则.第16题答案第16题解析设正的外接圆圆心为,易知,在中,故球的表面积为.第17题答案第17题解析根据题意球心到平面的距离为,在的外接圆的半径为,所以球的半径为,所以此三棱锥的外接球的体积为,所以答案为:.第18题答案第18题解析设所给半球的半径为,则棱锥的高,底面正方形中有,所以其体积,则,于是所求半球的体积为.第19题答案第19题解析依题意,外接球的表面积为,所以.如图所示,三棱柱外接圆球心为,设,在直角三角形中,所以.三棱柱的体积为,当且仅当时取得最大值.第20题答案第20题解析由已知可得长方体的体对角线为球的直径:,所以.所以球的面积为.更多精品文档
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。