ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:202KB ,
文档编号:5869058      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5869058.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(初中数学因式分解专题训练及答案解析(DOC 14页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

初中数学因式分解专题训练及答案解析(DOC 14页).doc

1、七年级下数学因式分解专题训练一选择题(共13小题)1下列因式分解错误的是()Ax2y2=(x+y)(xy)Bx2+6x+9=(x+3)2Cx2+xy=x(x+y)Dx2+y2=(x+y)22把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A2B3C2D33一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()Ax3x=x(x21)Bx22xy+y2=(xy)2Cx2yxy2=xy(xy)Dx2y2=(xy)(x+y)4下列各式由左边到右边的变形中,是分解因式的为()Aa(x+y)=ax+ayBx24x+4=x(x4)+4C10x25x=

2、5x(2x1)Dx216+3x=(x4)(x+4)+3x5下列多项式能分解因式的是()Ax2yBx2+1Cx2+xy+y2Dx24x+46下列分解因式正确的是()A3x26x=x(3x6)Ba2+b2=(b+a)(ba)C4x2y2=(4x+y)(4xy)D4x22xy+y2=(2xy)27下列多项式中,能用公式法分解因式的是()Ax2xyBx2+xyCx2y2Dx2+y28把代数式ax24ax+4a分解因式,下列结果中正确的是()Aa(x2)2Ba(x+2)2Ca(x4)2Da(x+2)(x2)9下列因式分解错误的是()Ax2y2=(x+y)(xy)Bx2+y2=(x+y)(x+y)Cx2x

3、y+xzyz=(xy)(x+z)Dx23x10=(x+2)(x5)10已知a、b、c是ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则ABC的形状是()A等腰三角形B直角三角形C等腰三角形或直角三角形D等腰直角三角形11任何一个正整数n都可以进行这样的分解:n=st(s,t是正整数,且st),如果pq在n的所有这种分解中两因数之差的绝对值最小,我们就称pq是n的最佳分解,并规定:F(n)=例如18可以分解成118,29,36这三种,这时就有F(18)=给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n

4、)=1其中正确说法的个数是()A1B2C3D412(8)2006+(8)2005能被下列数整除的是()A3B5C7D913如果x2+x1=0,那么代数式x3+2x27的值为()A6B8C6D8二填空题(共12小题)14若x2+4x+4=(x+2)(x+n),则n=_15多项式ax24a与多项式x24x+4的公因式是_16因式分解:ax2y+axy2=_17计算:9xy(x2y)=_;分解因式:2x(a2)+3y(2a)=_18若|m4|+(5)2=0,将mx2ny2分解因式为_19因式分解:(2x+1)2x2=_20分解因式:a3ab2=_21分解因式:a310a2+25a=_22因式分解:9

5、x2y24y4=_23在实数范围内分解因式:x2+x1=_24已知P=3xy8x+1,Q=x2xy2,当x0时,3P2Q=7恒成立,则y的值为_25在日常生活中如取款、上网等都需要密码有一种用“因式分解”法产生的密码,方便记忆原理是:如对于多项式x4y4,因式分解的结果是(xy)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(xy)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,取x=10,y=10时,用上述方法产生的密码是:_(写出一个即可)三解答题(共5小题)26化简:(ab)(a+b)2(a+b)

6、(ab)2+2b(a2+b2)27因式分解:x2(y21)+2x(y21)+(y21)28在实数范围内分解因式:29计算:1aa(1a)a(1a)2a(1a)3a(1a)2000(1a)2001330为进一步落实中华人民共和国民办教育促进法,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)

7、设第k所民办学校所得到的奖金为ak元(1kn),试用k、n和b表示ak(不必证明);(3)比较ak和ak+1的大小(k=1,2,n1),并解释此结果关于奖金分配原则的实际意义七年级下数学因式分解专题训练参考答案与试题解析一选择题(共13小题)1下列因式分解错误的是()Ax2y2=(x+y)(xy)Bx2+6x+9=(x+3)2Cx2+xy=x(x+y)Dx2+y2=(x+y)2考点:因式分解的意义分析:根据公式特点判断,然后利用排除法求解解答:解:A、是平方差公式,正确;B、是完全平方公式,正确;C、是提公因式法,正确;D、两平方项同号,因而不能分解,错误;故选D点评:本题主要考查了对于学习过

8、的两种分解因式的方法的记忆与理解,需熟练掌握2把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A2B3C2D3考点:因式分解的意义分析:根据因式分解与整式的乘法互为逆运算,把(x+1)(x+2)利用乘法公式展开即可求解解答:解:(x+1)(x+2)=x2+2x+x+2=x2+3x+2,c=2故选A点评:本题主要考查了因式分解与整式的乘法互为逆运算是中考中的常见题型3一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()Ax3x=x(x21)Bx22xy+y2=(xy)2Cx2yxy2=xy(xy)Dx2y2=(xy)(x+y)考点:因式

9、分解的意义分析:要找出“做得不够完整的一题”,实质是选出分解因式不正确的一题,只有选项A:x3x=x(x21)没有分解完解答:解:A、分解不彻底还可以继续分解:x3x=x(x21)=x(x+1)(x1),B、C、D正确故选A点评:因式分解要彻底,直至分解到不能再分解为止4下列各式由左边到右边的变形中,是分解因式的为()Aa(x+y)=ax+ayBx24x+4=x(x4)+4C10x25x=5x(2x1)Dx216+3x=(x4)(x+4)+3x考点:因式分解的意义分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解解答:解:A、是多项式乘法,错误;B、右边不是积的形式,x2

10、4x+4=(x2)2,错误;C、提公因式法,正确;D、右边不是积的形式,错误;故选C点评:这类问题的关键在于能否正确应用分解因式的定义来判断5下列多项式能分解因式的是()Ax2yBx2+1Cx2+xy+y2Dx24x+4考点:因式分解的意义分析:根据多项式特点结合公式特征判断解答:解:A、不能提公因式也不能运用公式,故本选项错误;B、同号不能运用平方差公式,故本选项错误;C、不符合完全平方公式,应该是x2+2xy+y2,故本选项错误;D、符合完全平方公式,正确;故选D点评:本题主要考查了公式法分解因式的公式结构特点的记忆,熟记公式是解题的关键6下列分解因式正确的是()A3x26x=x(3x6)

11、Ba2+b2=(b+a)(ba)C4x2y2=(4x+y)(4xy)D4x22xy+y2=(2xy)2考点:因式分解-运用公式法;因式分解-提公因式法专题:计算题分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解解答:解:A、3x26x=3x(x2),故本选项错误;B、a2+b2=(b+a)(ba),故本选项正确;C、4x2y2=(2x+y)(2xy),故本选项错误;D、4x22xy+y2不能分解因式,故本选项错误故选B点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的

12、方法是解题的关键7下列多项式中,能用公式法分解因式的是()Ax2xyBx2+xyCx2y2Dx2+y2考点:因式分解-运用公式法分析:能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反;能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍解答:解:A、x2xy只能提公因式分解因式,故选项错误;B、x2+xy只能提公因式分解因式,故选项错误;C、x2y2能用平方差公式进行因式分解,故选项正确;D、x2+y2不能继续分解因式,故选项错误故选C点评:本题考查用公式法进行因式分解能用公式法进行因式分解的式子的特点需识记8把代数式ax24ax+4a分解因

13、式,下列结果中正确的是()Aa(x2)2Ba(x+2)2Ca(x4)2Da(x+2)(x2)考点:提公因式法与公式法的综合运用分析:先提取公因式a,再利用完全平方公式分解即可解答:解:ax24ax+4a,=a(x24x+4),=a(x2)2故选A点评:本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底9下列因式分解错误的是()Ax2y2=(x+y)(xy)Bx2+y2=(x+y)(x+y)Cx2xy+xzyz=(xy)(x+z)Dx23x10=(x+2)(x5)考点:因式分解-十字相乘法等;因式分解的意义;因式分解-分组分解法分析:根据公式法分解因式特点判断,然后利用排除法求解

14、解答:解:A、x2y2=(x+y)(xy),是平方差公式,正确;B、x2+y2,两平方项同号,不能运用平方差公式,错误;C、x2xy+xzyz=(xy)(x+z),是分组分解法,正确;D、x23x10=(x+2)(x5),是十字相乘法,正确故选B点评:本题考查了公式法、分组分解法、十字相乘法分解因式,熟练掌握分解因式各种方法的特点对分解因式十分重要10已知a、b、c是ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则ABC的形状是()A等腰三角形B直角三角形C等腰三角形或直角三角形D等腰直角三角形考点:因式分解的应用专题:因式分解分析:把所给的等式a3+ab2+bc2=b3+

15、a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状解答:解:a3+ab2+bc2=b3+a2b+ac2,a3b3a2b+ab2ac2+bc2=0,(a3a2b)+(ab2b3)(ac2bc2)=0,a2(ab)+b2(ab)c2(ab)=0,(ab)(a2+b2c2)=0,所以ab=0或a2+b2c2=0所以a=b或a2+b2=c2故ABC的形状是等腰三角形或直角三角形故选C点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键11任何一个正整数n都可以进行这样的分解:n=st(s,t是正整数

16、,且st),如果pq在n的所有这种分解中两因数之差的绝对值最小,我们就称pq是n的最佳分解,并规定:F(n)=例如18可以分解成118,29,36这三种,这时就有F(18)=给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1其中正确说法的个数是()A1B2C3D4考点:因式分解的应用专题:新定义分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同解答:解:2=12,F(2)=是正确的;24=124=212=38=46,这几种分解中4和6的差的绝

17、对值最小,F(24)=,故(2)是错误的;27=127=39,其中3和9的绝对值较小,又39,F(27)=,故(3)是错误的;n是一个完全平方数,n能分解成两个相等的数,则F(n)=1,故(4)是正确的正确的有(1),(4)故选B点评:本题考查题目信息获取能力,解决本题的关键是理解此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(pq)12(8)2006+(8)2005能被下列数整除的是()A3B5C7D9考点:因式分解的应用分析:根据乘方的性质,提取公因式(8)2005,整理即可得到是7的倍数,所以能被7整除解答:解:(8)2006+(8)2005,=(8)(8)2005+(8)

18、2005,=(8+1)(8)2005,=7(8)2005=782005所以能被7整除故选C点评:本题考查提公因式法分解因式,关键在于提取公因式,然后再对所剩的因数进行计算13如果x2+x1=0,那么代数式x3+2x27的值为()A6B8C6D8考点:因式分解的应用专题:整体思想分析:由x2+x1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可解答:解:由x2+x1=0得x2+x=1,x3+2x27=x3+x2+x27,=x(x2+x)+x27,=x+x27,=17,=6故选C点评:本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代

19、数式x2+x的值,然后利用“整体代入法”求代数式的值二填空题(共12小题)14若x2+4x+4=(x+2)(x+n),则n=2考点:因式分解的意义专题:计算题分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可解答:解:(x+2)(x+n)=x2+(n+2)x+2n,n+2=4,2n=4,解得n=2点评:本题主要利用因式分解与整式的乘法是互逆运算15多项式ax24a与多项式x24x+4的公因式是x2考点:公因式分析:分别将多项式ax24a与多项式x24x+4进行因式分解,再寻找他们的公因式解答:解:ax24a=a(x24)=a(x+2)(x2),x24x+4

20、=(x2)2,多项式ax24a与多项式x24x+4的公因式是x2点评:本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式16因式分解:ax2y+axy2=axy(x+y)考点:因式分解-提公因式法分析:确定公因式为axy,然后提取公因式即可解答:解:ax2y+axy2=axy(x+y)点评:本题考查了提公因式法分解因式,准确找出公因式是解题的关键17计算:9xy(x2y)=3x3y2;分解因式:2x(a2)+3y(2a)=(a2)(2x3y)考点:因式分解-提公因式法;单项式乘多项式专题:因式分解分析:(1)根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对

21、于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,计算即可(2)直接提取公因式(a2)即可解答:解:9xy(x2y)=9x2xyy=3x3y2,2x(a2)+3y(2a)=(a2)(2x3y),故答案分别为:3x3y2,(a2)(2x3y)点评:(1)本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键(2)本题考查了提公因式法分解因式,解答此题的关键把(ay)看作一个整体,利用整体思想进行因式分解18若|m4|+(5)2=0,将mx2ny2分解因式为(2x+5y)(2x5y)考点:因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:偶次方分析:先根据绝对值非负数,平方

22、数非负数的性质列式求出m、n的值分别是4和25,然后代入多项式,再利用平方差公式进行因式分解即可解答:解:|m4|+(5)2=0m4=0,5=0,解得:m=4,n=25,mx2ny2,=4x225y2,=(2x+5y)(2x5y)点评:本题主要考查利用平方差公式分解因式,根据非负数的性质求出m、n的值是解题的关键19因式分解:(2x+1)2x2=(3x+1)(x+1)考点:因式分解-运用公式法分析:直接运用平方差公式分解因式,两项平方的差等于这两项的和与这两项的差的积解答:解:(2x+1)2x2,=(2x+1+x)(2x+1x),=(3x+1)(x+1)点评:本题主要考查平方差公式分解因式,熟

23、记公式结构是解题的关键,本题难点在于把(2x+1)看作一个整体20分解因式:a3ab2=a(a+b)(ab)考点:提公因式法与公式法的综合运用分析:观察原式a3ab2,找到公因式a,提出公因式后发现a2b2是平方差公式,利用平方差公式继续分解可得解答:解:a3ab2=a(a2b2)=a(a+b)(ab)点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式本题考点:因式分解(提取公因式法、应用公式法)21分解因式:a310a2+25a=a(a5)2考点:提公因式法与公式法的综合运用分析:先提取公因式a,再利用完全平方公式继续分解解答:解:a310a2+25a,=a(a210

24、a+25),(提取公因式)=a(a5)2(完全平方公式)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底22因式分解:9x2y24y4=(3x+y+2)(3xy2)考点:因式分解-分组分解法分析:此题可用分组分解法进行分解,可以将后三项分为一组,即可写成平方差的形式,利用平方差公式分解因式解答:解:9x2y24y4,=9x2(y2+4y+4),=9x2(y+2)2,=(3x+y+2)(3xy2)点评:本题考查了分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三

25、项分为一组23在实数范围内分解因式:x2+x1=(x+)(x+)考点:实数范围内分解因式;因式分解-运用公式法分析:本题考查对一个多项式进行因式分解的能力,当要求在实数范围内进行分解时,分解的结果一般要分到出现无理数为止,而且对于不能直接看出采用什么方法进行因式分解的多项式,则需进行变形整理,一般可以在保证式子不变的前提下添加一些项,如本题,因为有x2+x,所以可考虑配成完全平方式,再继续分解解答:解:x2+x+1=(x+)2=(x+)2()2=(x+)+(x+)=(x+)(x+)点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般

26、要分到出现无理数为止同时还要结合式子特点进行适当的变形,以便能够分解24已知P=3xy8x+1,Q=x2xy2,当x0时,3P2Q=7恒成立,则y的值为2考点:因式分解的应用分析:先根据题意把P=3xy8x+1,Q=x2xy2分别代入3P2Q=7中,再合并同类项,然后提取公因式,即可求出y的值解答:解:P=3xy8x+1,Q=x2xy2,3P2Q=3(3xy8x+1)2(x2xy2)=7恒成立,9xy24x+32x+4xy+4=7,13xy26x=0,13x(y2)=0,x0,y2=0,y=2;故答案为:2点评:此题考查了因式分解的应用,解题的关键是把要求的式子进行整理,然后提取公因式,是一道

27、基础题25在日常生活中如取款、上网等都需要密码有一种用“因式分解”法产生的密码,方便记忆原理是:如对于多项式x4y4,因式分解的结果是(xy)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(xy)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可)考点:因式分解的应用专题:开放型分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可解答:解:4x3xy2=x(4x2y2)=x(2

28、x+y)(2xy),当x=10,y=10时,x=10;2x+y=30;2xy=10,用上述方法产生的密码是:101030或103010或301010点评:本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力三解答题(共5小题)26化简:(ab)(a+b)2(a+b)(ab)2+2b(a2+b2)考点:因式分解-提公因式法分析:先对前两项提取公因式(ab)(a+b),整理后又可以继续提取公因式2b,然后整理即可解答:解:(ab)(a+b)2(a+b)(ab)2+2b(a2+b2),=(ab)(a+b

29、)(a+ba+b)+2b(a2+b2),=2b(a2b2)+2b(a2+b2),=2b(a2b2+a2b2),=4a2b点评:本题考查了平方差公式,提公因式法分解因式,对部分项提取公因式后再次出现公因式是解题的关键,运用因式分解法求解比利用整式的混合运算求解更加简便27因式分解:x2(y21)+2x(y21)+(y21)考点:提公因式法与公式法的综合运用分析:先提取公因式(y21),再对余下的多项式利用完全平方公式继续分解,对公因式利用平方差公式分解因式解答:解:x2(y21)+2x(y21)+(y21),=(y21)(x2+2x+1),=(y21)(x+1)2,=(y+1)(y1)(x+1)

30、2点评:本题考查了提公因式法,公式法分解因式,难点在于提取公因式后需要对公因式和剩余项进行二次因式分解,分解因式一定要彻底28在实数范围内分解因式:考点:实数范围内分解因式分析:将原式化为(x22)+(x+)进行分解即可,前半部分可用平方差公式解答:解:原式=(x22)+(x+)=(x+)(x)+(x+)=(x+)(x+1)点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止29计算:1aa(1a)a(1a)2a(1a)3a(1a)2000(1a)20013考点:因式分解的应用专题:规律型分析:本题要根据规律进行

31、求解,我们发现式子的前两项可写成(1a),那么(1a)a(1a)用提取公因式法可得出(1a)(1a)=(1a)2,再和下一项进行计算就是(1a)2a(1a)2=(1a)3,根据此规律,我们可得出原式=(1a)2001(1a)20013=3解答:解:1aa(1a)a(1a)2a(1a)3a(1a)2000(1a)20013,=(1a)2000a(1a)2000(1a)20013,=(1a)2001(1a)20013,=3点评:本题考查了提公因式法的应用,解题的关键是运用提取公因式法来找出式子的规律,从而求出答案30为进一步落实中华人民共和国民办教育促进法,某市教育局拿出了b元资金建立民办教育发展

32、基金会,其中一部分作为奖金发给了n所民办学校奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为ak元(1kn),试用k、n和b表示ak(不必证明);(3)比较ak和ak+1的大小(k=1,2,n1),并解释此结果关于奖金分配原则的实际意义考点:因式分解的应用;列代数式专题:规律型分析:(1)第2所民办学校得到的奖金为:(总资金第一所学校得到的奖

33、金)n;第3所民办学校得到的奖金为:(总资金第一所学校得到的奖金第2所民办学校得到的奖金)n;(2)由(1)得k所民办学校所得到的奖金为ak=总资金n(1)n;(3)用ak表示出ak+1进行比较即可解答:解:(1)因为第1所学校得奖金a1=,所以第2所学校得奖金a2=(b)=(1)所以第3所学校得奖金a3=(2)由上可归纳得到ak=(3)因为ak=,ak+1=,所以ak+1=(1)akak结果说明完成业绩好的学校,获得的奖金就多点评:这是一道渗透新课程理念的好题它以奖金发放为背景,以列代数式、因式分解、代数式的大小比较等相关知识为载体,考查了学生数感、符号感、数学建模能力、观察分析、归纳推理等能力本题得分率较低,究其原因主要有:一是部份学生不能将文字语言转换成符号语言,二是部份学生不能在代数式的整理变形过程中总结发现规律解决本题的关键一是充分理解题意,二要表示第k所民办学校所得到的奖金,就要在第2所、第3所民办学校得到的奖金(代数式)上发现规律,三要提高对代数式变形的技能14 / 14

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|