ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:310.50KB ,
文档编号:5869211      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5869211.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(双曲线题型归纳含(答案)(DOC 9页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

双曲线题型归纳含(答案)(DOC 9页).doc

1、 三、典型例题选讲(一)考查双曲线的概念例1 设P是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线的左、右焦点若,则( )A或 B6 C7 D9分析:根据标准方程写出渐近线方程,两个方程对比求出的值,利用双曲线的定义求出的值解:双曲线渐近线方程为y=,由已知渐近线为,.,.故选C归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法(二)基本量求解例2(2009山东理)设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为( )A B5 C D解析:双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以=,所以,故选D归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念

2、,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解本题较好地考查了基本概念、基本方法和基本技能例3(2009全国理)设双曲线(a0,b0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )A. B.2 C. D.解析:设切点,则切线的斜率为由题意有又有,联立两式解得:因此选C例4(2009江西)设和为双曲线()的两个焦点,若,是正三角形的三个顶点,则双曲线的离心率为( )A B C D3解析:由有,则,故选B归纳小结:注意等边三角形及双曲线的几何特征,从而得出,体现数形结合思想的应用(三)求曲线的方程例5(2009,北京)已知双曲线的离心率为,右准线方程为(1)求双

3、曲线C的方程;(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值分析:(1)由已知条件列出的关系,求出双曲线C的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m的值解:(1)由题意,得,解得.,所求双曲线的方程为(2)设A、B两点的坐标分别为,线段AB的中点为,由得(判别式),点在圆上,另解:设A、B两点的坐标分别为,线段AB的中点为,由,两式相减得.由直线的斜率为1,代入上式,得.又在圆上,得,又在直线上,可求得m的值.归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能

4、力例6 过的直线交双曲线于两点,若为弦的中点,求直线的方程分析:求过定点的直线方程,只需要求出它的斜率为此可设其斜率是,利用M为弦的中点,即可求得的值,由此写出直线的方程也可设出弦的两端点坐标用“点差法”求解解法一:显然直线不垂直于轴,设其斜率是,则方程为由消去得 设,由于M为弦的中点,所以,所以显然,当时方程的判别式大于零.所以直线的方程为,即解法二:设,则得.又因为,所以若则,由得,则点都不在双曲线上,与题设矛盾,所以所以所以直线的方程为,即经检验直线符合题意,故所求直线为解法三:设(),由于关于点M(1,1)对称,所以的坐标为(),则消去平方项,得 即点的坐标满足方程,同理点的坐标也满足

5、方程故直线的方程为归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在(四)轨迹问题例7 已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于求线段的中点的轨迹的方程分析:求轨迹问题有多种方法,如相关点法等,本题注意到点是线段的中点,可利用相关点法解:由已知得,则直线的方程为:令得,即设,则,即代入得:,即的轨迹的方程为归纳小结:将几何特征转化为代数关系是解析几何常用方法(五)突出几何性质的考查例8(2006江西)是双曲线的右支上一点,分别是圆和上的点,则的

6、最大值为( )A.6 B.7 C.8 D.9解析:双曲线的两个焦点与恰好是两圆的圆心,欲使的值最大,当且仅当最大且最小,由平面几何性质知,点在线段的延长线上,点是线段与圆的交点时所求的值最大.此时因此选D例9(2009重庆)已知以原点为中心的双曲线的一条准线方程为,离心率(1)求该双曲线的方程;(2)如图,点的坐标为,是圆上的点,点在双曲线右支上,求的最小值,并求此时点的坐标.分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将转化为其它线段,再利用不等式的性质求解解:(1)由题意可知,双曲线的焦点在轴上,故可设双曲线的方程为,设,由准线方程为得,由得解得.从而,该双曲线的方程为.(2)设点D的坐标为,则点A、D为双曲线的焦点,则.所以因为是圆上的点,其圆心为,半径为1,故,从而当在线段CD上时取等号,此时的最小值为直线CD的方程为,因点M在双曲线右支上,故由方程组解得所以点的坐标为归纳小结:本题综合考查双曲线的知识及不等式性质,考查推理能力及数形结合思想

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|