1、【必考题】高中必修一数学上期末一模试题附答案一、选择题1已知在R上是奇函数,且A-2B2C-98D982已知,则a,b,c的大小关系为ABCD3已知函数关于x的方程,有四个不同的实数解,则的取值范围为( )ABCD4已知,则ABCD5设,则( )ABCD6酒驾是严重危害交通安全的违法行为为了保障交通安全,根据国家有关规定:100mL血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量达到2079mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经
2、过几个小时才能驾驶汽车?( )(参考数据:lg0.20.7,1g0.30.5,1g0.70.15,1g0.80.1)A1B3C5D77对于函数,在使恒成立的式子中,常数的最小值称为函数的“上界值”,则函数的“上界值”为( )A2B2C1D18函数的单调递增区间为( )ABCD9函数的反函数图像向右平移1个单位,得到函数图像,函数的图像与函数图像关于成轴对称,那么( )ABCD10某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的.已知在过滤过程中的污染物的残留数量(单位:毫克/升)与过滤时间(单位:小时)之间的函数关系为(为常数,为原污染物总量).若前个小时废
3、气中的污染物被过滤掉了,那么要能够按规定排放废气,还需要过滤小时,则正整数的最小值为( )(参考数据:取)ABCD11已知函数,则函数的单调减区间为( )ABCD12函数是周期为4的偶函数,当时,,则不等式在上的解集是 ( )ABCD二、填空题13已知函数,则关于的方程的所有实数根的和为_.14如果函数是幂函数,且图像不经过原点,则实数_.15是上的奇函数且满足,若时,则在上的解析式是_16已知函数若存在互不相等实数有则的取值范围是_.17己知函数在区间上的最大值是2,则实数_.18设,满足,则的最小值为_.19已知常数,函数,若与有相同的值域,则的取值范围为_.20函数,若函数的图像与函数的
4、图像有公共点,则m的取值范围是_.三、解答题21某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常排气后,测得车库内的一氧化碳浓度为,继续排气,又测得浓度为,经检测知该地下车库一氧化碳浓度与排气时间存在函数关系:(,为常数)。(1)求,的值;(2)若地下车库中一氧化碳浓度不高于为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?22科研人员在对某物质的繁殖情况进行调查时发现,1月、2月、3月该物质的数量分别为3、5、9个单位.为了预测以后各月该物质的数量,甲选择了模型,乙选择了模型,其中y为该物质的数量,x为月份数,a,b,c
5、,p,q,r为常数.(1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由.(2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?23已知函数(,),在同一个周期内,当时,取得最大值,当时,取得最小值.(1)求函数的解析式,并求在0,上的单调递增区间.(2)将函数的图象向左平移个单位长度,再向下平移个单位长度,得到函数的图象,方程在有2个不同的实数解,求实数a的取值范围.24已知函数,()若,求方程的解集;()若方程有两个不同的实数根,求实数的取值范围25已知全集集合.()若,求和;()若,求实数m的取值范围.26已知函数
6、是偶函数.(1)求的值;(2)若不等式对恒成立,求实数的取值范围.(注:如果求解过程中涉及复合函数单调性,可直接用结论,不需证明)【参考答案】*试卷处理标记,请不要删除一、选择题1A解析:A【解析】f(x4)f(x),f(x)是以4为周期的周期函数,f(2 019)f(50443)f(3)f(1)又f(x)为奇函数,f(1)f(1)2122,即f(2 019)2.故选A2D解析:D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数
7、或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确3B解析:B【解析】【分析】由题意作函数与的图象,从而可得,从而得解【详解】解:因为,可作函数图象如下所示:依题意关于x的方程,有四个不同的实数解,即函数与的图象有四个不同的交点,由图可知令,则,即,所以,则,所以,因为,在上单调递增,所以,即故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用属于中档题4A解析:A【解析】【分析】【详解】因为,且幂
8、函数在 上单调递增,所以bac.故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.5D解析:D【解析】【分析】由对数的运算化简可得,结合对数函数的性质,求得,又由指数函数的性质,求得,即可求解,得到答案.【详解】由题意,对数的运算公式,可得,又由,所以,即,由指数函数的性质,可得,所以.故选D.【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函
9、数的图象与性质,求得的范围是解答的关键,着重考查了推理与运算能力,属于基础题.6C解析:C【解析】【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型 求解.【详解】因为1小时后血液中酒精含量为(1-30%)mg/mL,x小时后血液中酒精含量为(1-30%)x mg/mL的,由题意知100mL血液中酒精含量低于20mg的驾驶员可以驾驶汽车,所以,两边取对数得, , ,所以至少经过5个小时才能驾驶汽车.故选:C【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.7C解析:C【解析】【分析】利用换元法求解复合函数的值域即可求得
10、函数的“上界值”.【详解】令 则 故函数的“上界值”是1;故选C【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.8C解析:C【解析】【分析】求出函数的定义域,然后利用复合函数法可求出函数的单调递增区间.【详解】解不等式,解得或,函数的定义域为.内层函数在区间上为减函数,在区间上为增函数,外层函数在上为减函数,由复合函数同增异减法可知,函数的单调递增区间为.故选:C.【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.9D解析:D【解析
11、】【分析】首先设出图象上任意一点的坐标为,求得其关于直线的对称点为,根据图象变换,得到函数的图象上的点为,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果.【详解】设图象上任意一点的坐标为,则其关于直线的对称点为,再将点向左平移一个单位,得到,其关于直线的对称点为,该点在函数的图象上,所以有,所以有,即,故选:D.【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线对称,属于简单题目.10C解析:C【解析】【分析】根据已知条件得出,可得出,然后解不等式,解出的取值范围,即可得出正整数的最小值.【详解】由题意,前个小时
12、消除了的污染物,因为,所以,所以,即,所以,则由,得,所以,故正整数的最小值为.故选:C.【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.11C解析:C【解析】函数为减函数,且,令,有,解得.又为开口向下的抛物线,对称轴为,所以在上单调递增,在上单调递减,根据复合函数“同增异减”的原则函数的单调减区间为.故选C.点睛:形如的函数为,的复合函数,为内层函数,为外层函数.当内层函数单增,外层函数单增时,函数也单增;当内层函数单增,外层函数单减时,函数也单减;当内层函数单减,外层函数单增时,函数也单减;当内层函数单减,外层函数单减时,函数也单增.简称为“同增异
13、减”.12C解析:C【解析】若,则此时是偶函数, 即 若 ,则 函数的周期是4, 即 ,作出函数在 上图象如图,若,则不等式 等价为 ,此时 若 ,则不等式等价为 ,此时 ,综上不等式 在 上的解集为故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键二、填空题13【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象解析:【解析】【分析】由可得出和,作出函数的图象,由图象可得出方程的根,将方程
14、的根视为直线与函数图象交点的横坐标,利用对称性可得出方程的所有根之和,进而可求出原方程所有实根之和.【详解】,或.方程的根可视为直线与函数图象交点的横坐标,作出函数和直线的图象如下图:由图象可知,关于的方程的实数根为、.由于函数的图象关于直线对称,函数的图象关于直线对称,关于的方程存在四个实数根、如图所示,且,因此,所求方程的实数根的和为.故答案为:.【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.143【解析】【分析】根据幂函数的概念列式解得或然后代入解析式看指数的符号负号就符合正号就不符合【详解】因为函数是幂函
15、数所以即所以所以或当时其图象不过原点符合题意;当时其图象经过原点不合题意综上所述:故解析:3【解析】【分析】根据幂函数的概念列式解得,或,然后代入解析式,看指数的符号,负号就符合,正号就不符合.【详解】因为函数是幂函数,所以,即,所以,所以或,当时,其图象不过原点,符合题意;当时,其图象经过原点,不合题意.综上所述:.故答案为:3【点睛】本题考查了幂函数的概念和性质,属于基础题.15【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题解析:【解析】【分析】首先
16、根据题意得到,再设,代入解析式即可.【详解】因为是上的奇函数且满足,所以,即.设,所以.,所以.故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.16【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:【解析】【分析】不妨设,根据二次函数对称性求得的值.根据绝对值的定义求得的关系式,将转化为来表示,根据的取值范围,求得的取值范围.【详解】不妨设,画出函数的图像如下图所示.二次函数的对称轴为,所以.
17、不妨设,则由得,得,结合图像可知,解得,所以,由于在上为减函数,故.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.17或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:或.【解析】【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于的方程,即可求解.【详解】函数,对称轴方程为为;当时,;当,即(舍去),或(舍去);当时,综上或.故答案为:或.【点
18、睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.18【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】【分析】令,将用表示,转化为求关于函数的最值.【详解】,令,则,当且仅当时等号成立.故答案为:.【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.19【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型
19、函数的值域要注意二次函数的值解析:【解析】【分析】分别求出的值域,对分类讨论,即可求解.【详解】,的值域为,当,函数值域为,此时的值域相同;当时,当时,当,所以当时,函数的值域不同,故的取值范围为.故答案为:.【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.20【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m的取值范围是故答案为:【点睛】解析:【解析】【分析】作出函数的图象如下图所示,得出函数的值域,由图象可得m的取值范围.【详解】作出函
20、数的图象如下图所示,函数的值域为,由图象可得要使函数的图像与函数的图像有公共点,则m的取值范围是,故答案为:.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.三、解答题21(1)(2)【解析】【分析】(1)将和分别代入,列方程组可解得,从而可得.(2) 由(1)知,然后利用指数函数的单调性解不等式即可得到.【详解】(1)由题意,可得方程组,解得(2)由(1)知由题意,可得 ,即 ,即 ,解得所以至少排气 ,这个地下车库中的一氧化碳含量才能达到正常状态。【点睛】本题考查了指数型函数的解析式的求法以及利用指
21、数函数的单调性解指数不等式,属于基础题.22(1)乙模型更好,详见解析(2)月增长量为,月增长量为,月增长量为;越到后面当月增长量快速上升.【解析】【分析】(1)根据题意分别求两个模型的解析式,然后验证当时的函数值,最接近32的模型好;(2)第月的增长量是,由增长量总结结论.【详解】(1)对于甲模型有,解得:当时,.对于乙模型有,解得:,当时,.因此,乙模型更好;(2)时,当月增长量为,时,当月增长量为,时,当月增长量为,从结果可以看出,越到后面当月增长量快速上升.(类似结论也给分)【点睛】本题考查函数模型,意在考查对实际问题题型的分析能力和计算能力,属于基础题型,本题的关键是读懂题意.23(
22、1),单调增区间为,;(2)【解析】【分析】(1)由最大值和最小值求得,由最大值点和最小值点的横坐标求得周期,得,再由函数值(最大或最小值均可)求得,得解析式;(2)由图象变换得的解析式,确定在上的单调性,而有两个解,即的图象与直线有两个不同交点,由此可得【详解】(1)由题意知解得,.又,可得.由,解得.所以,由,解得,.又,所以的单调增区间为,.(2)函数的图象向左平移个单位长度,再向下平移个单位长度,得到函数的图象,得到函数的表达式为.因为,所以,在是递增,在上递减,要使得在上有2个不同的实数解,即的图像与有两个不同的交点,所以.【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数
23、的性质“五点法”是解题关键,正弦函数的性质是解题基础24()()【解析】【分析】()将代入直接求解即可;()设,得到在有两个不同的解,利用二次函数的性质列不等式组求解即可.【详解】()当时,所以, 所以,因此,得解得,所以解集为()因为方程有两个不同的实数根,即, 设,在有两个不同的解,令,由已知可得 解得【点睛】本题主要考查了对数函数与指数函数的复合函数的处理方式,考查了函数与方程的思想,属于中档题.25()()【解析】【分析】()由时,求得集合,再根据集合的并集、补集的运算,即可求解;()由题意,求得,根据,列出不等式组,即可求解。【详解】()。(),由题有,所以【点睛】本题主要考查了集合
24、的混合运算,以及利用集合的包含关系求解参数的取值范围问题,其中解答中熟记集合的并集、补集的运算方法,以及根据集合间的包含关系,列出相应的不等式组求解是解答的关键,着重考查了推理与计算能力,属于基础题。26(1)(2)【解析】【分析】(1)由偶函数定义,代入解析式求解即可;(2)题设条件可等价转化为对恒成立,因此设,求出其在上的最小值即可得出结论.【详解】(1)函数 是偶函数.,.(2)由(1)知,不等式即为,令,则,又函数在上单调递减,所以,的取值范围是.【点睛】本题考查函数奇偶性的定义运用以及不等式恒成立问题,属于中档题.解决不等式恒成立问题时,一般首选参变分离法,将恒成立问题转化为最值问题求解.
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。