ImageVerifierCode 换一换
格式:PPTX , 页数:13 ,大小:310.94KB ,
文档编号:5897830      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897830.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 2-3.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 2-3.pptx

1、Higherorder DerivativesHigher-order derivatives2()()v ts tvelocity():v tdisplacement():s tacceleration():a t()()()a tv ts t()()a ts tsecond order derivativeHigher-order derivatives3()()()fxfx :RfI (Higher order derivatives)Suppose that the functionis derivable.:RfI If its derivativexI is also deriva

2、ble at,then f isf called twice derivable at x and the derivate of at x is called the secondderivative of f at x,and denoted by.If f is everywheretwice derivable on I,then f is said to be twice derivable on I andf iscalled second derivative or second derived function of f on I.In general,ifxI(1):RnfI

3、 is derivable at ,1n the derivative of order,then f iscalled n times derivable at x(1)nf and the derivative ofat x is called thederivative of order n of f at x,and is denoted by()(1)()()nnffx .Higher-order derivatives 4we can define derivability of order n on I and the derivative ofSimilarly,order n

4、 on I for the function f.(Higher order derivatives)The derivative of order n of the function()yf x is denoted by()nynnd ydxor .Nn ()nfIf is continuous on I,then f is said to be continuously derivable oforder n on I,()nCor a function of class()()nfCI on I,denoted by.()nCIf f is a function of classon

5、I for anyon I,denoted by,then f is said to be()C infinitely derivable on I,or a function of class()()fCI .Higher-order derivatives5Note If the n th order derivative of a function()f x in(on)an interval I(open or closed)is continuous,then we say that()()()nf xCI,where note()()nCI denote all functions

6、 with n th order continuous derivative.For example,the polynomial of degree n,1010()(0)nnnnP xa xa xaa is one element of()(,)nC .(Higher order derivatives)The second derivative and derivatives of order higher that second order are all called higher order derivatives高阶导数.Commonly,f is said to be the

7、first order derivative of f,and f itself is said to be the zero order derivative of f.Higher-order derivatives6 If y=sin2x,find and y.y Solution4sin2;yx 2cos2;yx8cos2.yx Finish.Higher-order derivatives7 Prove the following formulae for derivatives of order n:()()xnxee(1)()(sin)sin2nxxn(2)()(cos)cos2

8、nxxn(3)()()(1)(1)(R,0)nnxnxx (4)()1(1)!ln(1)(1)(1)(1)nnnnxxx (5)Higher-order derivatives8()(sin)sin2nxxn By means of mathematical induction we know that the formula(2)holds.(sin)cossin222xxx (1)(sin)sin2kxxk Proof We will prove the formulae(2)and(5).(2)Because(sin)cossin2xxx ()(sin)sin2kxxk Assume t

9、hatholds,thensin(1)2xk cos2xk Higher-order derivatives9()1(1)!ln(1)(1)(1)(1)nnnnxxx The other solution is left to you.(3)22311 2ln(1)(1)(1)1xxx ()1(1)!ln(1)(1)(1)(1)nnnnxxx Proof(continued)Similarly to(2)by means of mathematical induction,we can obtains1ln(1)1xx 211ln(1)11xxx (5)BecauseHigher-order

10、derivatives10()()()(),Rnnnuvuv ()()()0()(1)()()1()nnn kkknknnn knkknnuvC uvuvC uvC uvuv Suppose that the functions u and v are both derivableuv of order n.Then and uv are also derivable of order n,and moreover we have:(1)The linear property:(2)Leibniz formula:Higher-order derivatives11()2()2()()2(1,

11、2,100),kxkkxuxeek22(),xf xx e(100)().fx Let find()()2,()2,()0(3,4,100).kv xx vxvxk(100)(100)1(99)(100)100()()()()()()()fxux v xCux v xu x vx 10022992982100992100 22222!xxxexexe100222(1002475).xexxSolution22(),(),xu xev xxWe takeIt is easy to seeBy means of the Leibniz formula we obtain:Finish.Higher

12、-order derivatives12Finish.(1)(1)1(2)()()()(1)()()!()()nnnnnfxxaxn nxaxnxax(1)(1)()()()()limnnnxafxfafaxa ()()()nf xxax Suppose that ,If it does not exist,explain;if it exists,find it.(1)()()nxCI where.Does()()nfaexist?Proof(1)()()nxCI Since ,(1)()nfx exists.By Leibniz formula,we have(1)()0nfa It is follows that(1)()nfa.Then,by the definition of,we have!()na So,()()!()nfana .Higher-order derivatives132132yxx 2211(2)(1)yxx 2233(1)1 2(1)1 2(2)(1)yxx Let()().nyx,find the nth derivativeSolution1121yxxSince ,soand By the mathematic induction,we have()1111()(1)!(2)(1)nnnnyxnxx .

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|