ImageVerifierCode 换一换
格式:PPTX , 页数:19 ,大小:492.26KB ,
文档编号:5897832      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897832.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 2-4.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 2-4.pptx

1、Derivation of Implicit Functions and Functions Defined by Parametric Equations,Relate Rates1Derivation of Implicit Functions2()yf x If there is a function,Iwhich is defined on some intervalxI(,()0F x f x such that ,()yf x xI then ,is called a implicit(,)0F x y function 隐函数隐函数 defined by the equation

2、 .310 xy0yexye31yx57230yyxxExample221,1,1xyx xy21yx21yx ExampleTheir explicit form can not be found.3Derivation of Implicit Functions Find the derivative of the function defined by the equation dydx()yf x 1sin.yxy Regarding y as a function of x defined by the equation ,1sinyxysincosdydyyxydxdxwith r

3、espect to x and we obtainFinish.Therefore,we haveSolutionand using the derivative rule for composite functions,we take the derivative1sinyxyof both sides of the functionorsin1cosdyydxxy .(1cos)sindyxyydx.4Derivation of Implicit FunctionsAgain,take derivatives of both sides of last equation,we have2x

4、yxyy 221xy()yy x If equation can determine a function ,dydx22d ydxfind and .Solution:Take the derivatives of both sides of equation,we have220dyxydx.Then,we have(0)dyxydxy .2dyyxdxy 22d ydxdxdxy21y .Finish.5Derivation of Implicit FunctionsSuppose that the function is defined by the equation()yy x,ye

5、xye0 xdydx 220.xd ydx find and take the derivative of both sides of the equation yexye0 x 1y Substitute and into the last equation,we haveWe obtainSolutionwith respect to x.0ydydyeyxdxdx.It is easy to see that1y 0 x when.So 010 xdyedx.01xdydxe .6Derivation of Implicit FunctionsSolution(continued):22

6、22220yydyd ydyd yeexdxdxdxdx()yfx Since is also a function of x;we haveSince ,we have 01xdydxe 1y 0 x when andFinish.22201xd ydxe .Suppose that the function is defined by the equation()yy x,yexye 0 xdydx 220.xd ydx find and 7Derivation of a Function Defined by Parametric EquationsIn many practical p

7、roblems,we represent the law of motion of a body in terms of parametric equations.cos02sinxattybt Example33cos02sinxaya 8Derivation of a Function Defined by Parametric EquationsOxyv1v2vFor example,if the frictional damping of air is omitted,the locus of motion of a projectile may be represented by a

8、 parametric equation:122,12xv tyv tgt where and represent the horizontal and vertical initial velocity of projectile respectively,g is the gravitational acceleration,t is the time,and x,y are the abscissa and ordinate of the projectile in the coordinate plane.1v2v the function where x and y are defi

9、ned by the parametric equations()()xx tyy t is called the function defined by the parametric equations.9Derivation of a Function Defined by Parametric Equations(2)If and are both twice derivable and ,then()0 x t&()xx t()yy t dyydxx&;()xx t()yy t(1)If the functions and are both derivable with respect

10、 to t(,)in and ()0 x t&,then223d yxyxydxx&.(Derivation rule for parametric equations)Assume that the function y=f(x)is defined by the parametric equations()()xx tyy t 10Derivation of a Function Defined by Parametric EquationsUsing the chain rule,we have1()txx Proof:()xx t(1)Since is derivable,and ,(

11、)0 x t&then by the derivative rulefor inverse function we have its inverse functionis derivable at xcorresponding to t,and11()dtdxdxx tdt&.1()txx We substitute()yy t into1()yy xx and obtain an identity.()()dydydty tydxdtdxx tx&.11Derivation of a Function Defined by Parametric Equations Finish.ddydtd

12、tdxdx Proof (continued)(2)A derivation with respect to xagain on both sides of aboveformula,we notice thatdydxis also a composite function of x with intermediate1()txx variable ;hence we obtain()1()()dy tdtx tx t&2()()()()1()()x t y tx t y tx tx t&22d yddydxdxdx 3xyxyx&12Derivation of a Function Def

13、ined by Parametric Equations Let(sin),(1cos)xa ttyat .dydxfind12345670.511.52a=1SolutionBy the method ofby parametric equations,we havederivation of a function defineddydydtdxdxdt sin(1cos)atat sin.1costt Finish.13Derivation of a Function Defined by Parametric Equations12345670.511.52(1)CNote If the

14、re exists a tangent line at every point of a curve ,and the direction of the tangent line changes continuously with the motion of the point,then is called a smooth curve.Note Suppose that every segmental arc of the curve is smooth,then is called a piecewise smooth curve.For example,the cycloid is a

15、piecewise smooth curve.()yf x ,then the curve represented by the equation is a smooth curve.Therefore,if f is a function of classDerivation of a Function Defined by Parametric Equations14 Find23.xttytt 22d ydxas a function of t if Solution2222212,2;13,6.dxd xxtxdtdtdyd yytytdtdt&2223(12)(6)(2)(13)(1

16、2)d ytttdxt 223d yxyxydxx&then23662.(12)ttt Finish.15Related ratesbetween the two rates of changes is called the problem of related rates of change.In some practical problems,in some process of change,the variables x and y change with respect to another variable t,that is(),xx t().yy t Then x and y

17、are dependent and hence so are the rates of change and .()x t&()y t&The problem of finding the relationship 16Related ratesThe three steps to solve these kind problems:Step 3.Find the rate of change that we want.Step 2.Take the derivative of both side of the equation with respect to t using the chai

18、n rule to get an expression between and .(,)0F x y ()x t&()y t&(,)0F x y Step 1.Find an equation to connect the variables x and y,that is ,17Related rates12cm10cm()H t()r t()h t18cm Water runs into a vertical cylindrical tank with radius 5cm from a conical tank of altitude 18cm and base radius 6cm.S

19、uppose that initially the conical tank is full of water.How fast is the water level rising in the cylindrical tank when the water is 12cm deep and the water level in the conical tank is falling at the rate of 1cm/s?Suppose that the height of the water level in the conical tank is at time t,the radiu

20、s of the cross section of the cone is at time t,and the height of the water level in the cylindrical tank is .()hh t()r t()HH t Solution18Related rates12cm10cm()H t()r t()h t18cmStep 1:Find a equation to connect the variables h and H.Substituting it into above equality 26183 33()25()627h tH t Since

21、the amount of water is kept unchanged and we let the density of water be kg/cm3,then we have22()()5()3rt h tH t ()()618r th t Since ,1()()3r th t and hence .we have36 22()()5()33()h th tH t i.e.,19Related ratesStep 2:2()2509dhdHh tdtdt we obtainor2()9250dhdHh tdtdt.Step 3:By step 2,we have 2()925dHh t dhdtdt Since (cm/s)as cm,1dhdt ()12h t 1625Therefore,the solution of this problem is cm/s.we have1625(cm/s).212(1)925dHdt Taking derivative on both sides of the above equation with respect tot using the chain rule,Finish.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|