ImageVerifierCode 换一换
格式:PPTX , 页数:17 ,大小:256.72KB ,
文档编号:5897833      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897833.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 4-4.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 4-4.pptx

1、Integration of Rational Fractions1Rational Functions 2Every rational function may be represented in the form of a rational fraction:10111011()(,)()nnnnmmmma xa xaxaP xm nNQ xb xb xbxbNote We assume these polynomials do not have common roots.Note If n m,the faction is called proper rational fraction

2、真真分式分式,otherwise,i.e.n m,the faction is called improper rational fraction 假分式假分式。Integration of Proper Rational Fraction3(Types of partial fraction)Proper rational fraction of the form:I.(A and a are constants);II.III.(the roots of the denominator are complex);IV.the roots of the denominator are com

3、plex)are called the partial fractions of types I,II,III and IV.Axa2(,);()kAkNkxa2AxBxpxq22(,()kAxBkNkxpxqIntegration of Proper Rational Fraction4Note If the denominator 22()()()()(),Q xxaxbxpxqxrxsthen 1211211122221211222212()()()()()()()()()()AAAP xQ xxaxaxaBBBxbxbxbM xNM xNM xNxpxqxpxqxpxqR xSR xS

4、R xSxrxsxrxsxrxs Integration of Proper Rational Fraction5 Represent the proper rational fraction in the form of a sum of partial rational fraction.2356xxxSolution2335632()()xxxxxx235632,xABxxxxAssumethen233()().A xB xxSo,1233.ABABSolving the system we find65,.AB Therefore23655632.xxxxxFinish.Integra

5、tion of Proper Rational Fraction6 Represent the proper rational fraction in the form of a sum of partial rational fraction.43212221xxxxSolution4322212221111,()ABCxDxxxxxxxAssumethen22211111()()()()().A xB xxCxDxSo,120201,BCABCDBCDABDi.e.,Therefore432221112221212121.()()()xxxxxxxxFinish.1 21 21 20.AB

6、CD Integration of Proper Rational Fraction7 I.(A and a are constants);Axaln.AdxAxaCxa11().()()()kkkAAdxAxadxCxakxa II.2(,);()kAkNkxaIntegration of Proper Rational Fraction8 III.2AxBxpxq222222222222222222422242224242244224()()(/)(/)()()(/)/()()()()()/()()ln()arctau xpAxBAxBdxdxxpxqxpqpA xpBApdxxpqpA

7、xpBApdxdxxpqpxpqpAd uBApduuqpuqpABApxpxqqp 224n.xpCqpIntegration of Proper Rational Fraction9 IV.2()kAxBxpxq2211,()()()kkkAxBdxICxpxqkxpxqwhere12221221232121142;()()()arctan;(;).kkktkIImktmmktppImqtxmmIntegration of Proper Rational Fraction10Compute the following integrals:2243223543131);2);256123);

8、4);22212385);6).3xdxdxxxxxxdxdxxxxxxxxxxdxdxxxx Integration of Proper Rational Fraction11211);2dxxx Solution211131212dxxxdxxx 1ln|1|ln|2|.3xxC11ln.32xCx Integration of Proper Rational Fraction12232)56xdxxx Solution26536235xdxxdxxxx 65326ln|3|5ln|2|.dxdxxxxxCIntegration of Proper Rational Fraction134

9、3213)2221dxxxxx Solution32422112(1)2(1)2(1)12221xdxxdxxxxxxx 222112(1)2(1)2(1)111ln|1|ln|1|.2(1)24xdxdxdxxxxxxCx Integration of Proper Rational Fraction14224)23xdxxx Solution2221(23)3223223xxxdxxxdxxx 222111(23)322323d xxdxxxxx2221ln(23)32(1)(2)dxxxx 2221(1)ln(23)32(1)(2)d xxxx 2131ln(23)arctan.222x

10、xxC Integration of Proper Rational Fraction1535)3xdxx Solution32(39)(3)2733xxxxdxdxxx 23227(39)313927ln|3|.32xxdxdxxxxxxC Integration of Proper Rational Fraction1654386)xxdxxx Solution542323338(1)()8xxxxxxxxdxdxxxxxxx228(1)(1)(1)xxxxdxdxx xx2834(1)11xxdxdxdxdxxxx32118ln|3ln|1|4ln|1|.32xxxxxxCQuadrat

11、ure Problems for elementary fundamental functions17By the previous examples,we have seen that quadratures are much more difficult than differentiations.When integrands are continuous,their integral must exist,but their computation sometimes requires skill,and sometimes may nor even be expressible by

12、 elementary functions.For instance,the integrals:24sin,1xxdxe dxdxxx seems very simple,and the integrands are all continuous.All of these integrals exist,but we can not express them in terms of elementary functions.In general,we have known that for any rational function and any rational trigonometric function,their integrals can be expressed by elementary functions.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|